Factoring By Grouping Example 1: Multiply: (π + π)(π + π) Step 1: π(π + π) + π(π + π) Step 2: ππ + ππ + ππ + ππ Step 3: ππ + ππ + ππ Consider the polynomial in Step 2: ππ + ππ + ππ + ππ We can factor this polynomial and get the original product. Factoring is simply the distributive property in reverse. Step 1: Group the first two terms and the last two terms together. Step 2: Factor out the greatest common factor (GCF) in the first two terms. Step 3: Cheat! The second group will be factorable resulting in the same binomial from Step 2. Step 4: Factor out the binomial ππ + ππ + ππ + ππ Step 1 π(π + π) + π(π + π) (π + π)(π + π) Step 2 & 3 Step 4 1 Example 2: Factor by Grouping: a.) πππ β ππ + πππ β ππ b.) πππ + πππ β π β π c.) ππππ β πππ ππ β πππ + ππ 2 Factoring By Grouping Practice Problems Factor each polynomial by grouping: 1. ππ + ππ + π + π 2. ππ β ππ + π β π 3. ππππ + ππππ β πππ β πππ 4. ππ β ππ β πππ + ππ 3
© Copyright 2026 Paperzz