read

Factoring By Grouping
Example 1:
Multiply:
(𝒙 + πŸ’)(𝒙 + πŸ‘)
Step 1:
𝒙(𝒙 + πŸ’) + πŸ‘(𝒙 + πŸ’)
Step 2:
π’™πŸ + πŸ’π’™ + πŸ‘π’™ + 𝟏𝟐
Step 3:
π’™πŸ + πŸ•π’™ + 𝟏𝟐
Consider the polynomial in Step 2:
π’™πŸ + πŸ’π’™ + πŸ‘π’™ + 𝟏𝟐
We can factor this polynomial and get the original product.
Factoring is simply the distributive property in reverse.
Step 1: Group the first two terms and the last two terms together.
Step 2: Factor out the greatest common factor (GCF) in the first
two terms.
Step 3: Cheat! The second group will be factorable resulting in
the same binomial from Step 2.
Step 4: Factor out the binomial
π’™πŸ + πŸ’π’™ + πŸ‘π’™ + 𝟏𝟐
Step 1
𝒙(𝒙 + πŸ’) + πŸ‘(𝒙 + πŸ’)
(𝒙 + πŸ’)(𝒙 + πŸ‘)
Step 2 & 3
Step 4
1
Example 2:
Factor by Grouping:
a.) πŸ”π’™πŸ βˆ’ πŸ“π’™ + πŸπŸπ’™ βˆ’ 𝟏𝟎
b.)
πŸ•π’˜πŸ + πŸπŸ’π’˜ βˆ’ π’˜ βˆ’ 𝟐
c.)
πŸπŸ”π’‚πŸ‘ βˆ’ πŸ’π’‚πŸ π’ƒπŸ βˆ’ πŸ’π’‚π’ƒ + π’ƒπŸ‘
2
Factoring By Grouping
Practice Problems
Factor each polynomial by grouping:
1.
π’™πŸ + πŸπ’™ + 𝒙 + 𝟐
2.
π’‚πŸ βˆ’ πŸ”π’‚ + 𝒂 βˆ’ πŸ”
3.
πŸπŸ“π’™πŸ + πŸπŸ“π’™π’š βˆ’ πŸ“π’™π’› βˆ’ πŸ”π’šπ’›
4.
πŸ“π’Ž βˆ’ πŸ”π’‘ βˆ’ πŸπ’Žπ’‘ + πŸπŸ“
3