Complex Fractions and Simplifying

Complex fraction:
- a fraction which has rational expressions in the numerator and/or
denominator
o
1 1
βˆ’
π‘₯ 2
π‘₯ 2 βˆ’4
β—‹
π‘₯
𝑦2
1
𝑦2
𝑦
βˆ’ 2
π‘₯
1
βˆ’ 2
π‘₯
Steps for Simplifying Complex Fractions
1. simplify the numerator and/or the denominator by adding and/or
subtracting the rational expressions
2. use the procedure for dividing fractions to change division to
multiplication
3. factor the numerator and denominator completely
4. simplify the fraction completely by canceling common factors
Example 1: Perform the indicated operations and simplify the expressions
completely.
a.
b.
1
1
βˆ’
π‘₯
2
π‘₯2 βˆ’ 4
b.
π‘₯
𝑦2
1
𝑦2
𝑦
βˆ’ 2
π‘₯
1
βˆ’ 2
π‘₯
c.
1
π‘₯+β„Ž
d. π‘Ž
β„Ž
βˆ’
1
π‘₯
d.
1
(π‘₯ + β„Ž)2
β„Ž
1
βˆ’ 2
π‘₯
e.
2
1βˆ’π‘₯
f. A
g.
βˆ’
2
1βˆ’π‘¦
π‘¦βˆ’π‘₯
f.
1
π‘₯
+
1
𝑦
1
π‘₯+𝑦
Negative Exponent Rule:
- to change the sign of an exponent, take the reciprocal of the entire
expression (do NOT take the reciprocal of the exponent)
1
5
1
o π‘₯ βˆ’3 = π‘₯ 3
β—‹ 5π‘₯ βˆ’3 = π‘₯ 3
β—‹ (5π‘₯ )βˆ’2 = 25π‘₯ 2
Example 2: Perform the indicated operations and simplify the following
expression completely. Do not include negative exponents in your
answer.
(25π‘₯ )βˆ’1 βˆ’ π‘₯
25π‘₯ βˆ’1 βˆ’ π‘₯
1
βˆ’ π‘₯
25π‘₯
25
βˆ’ π‘₯
π‘₯
1
25
(
βˆ’ π‘₯) ÷ ( βˆ’ π‘₯)
25π‘₯
π‘₯
1
π‘₯ 25π‘₯
25 π‘₯ π‘₯
(
βˆ’ βˆ™
)÷( βˆ’ βˆ™ )
25π‘₯ 1 25π‘₯
π‘₯ 1 π‘₯
1
25π‘₯ 2
25 π‘₯ 2
(
βˆ’
)÷( βˆ’ )
25π‘₯ 25π‘₯
π‘₯
π‘₯
1 βˆ’ 25π‘₯ 2
25 βˆ’ π‘₯ 2
(
)÷(
)
25π‘₯
π‘₯
1 βˆ’ 25π‘₯ 2
π‘₯
(
)βˆ™(
)
2
25π‘₯
25 βˆ’ π‘₯
(1 βˆ’ 5π‘₯ )(1 + 5π‘₯ )(π‘₯ )
(25)(π‘₯ )(5 βˆ’ π‘₯ )(5 + π‘₯ )
(𝟏 βˆ’ πŸ“π’™)(𝟏 + πŸ“π’™)
πŸπŸ“(πŸ“ βˆ’ 𝒙)(πŸ“ + 𝒙)
Re-arranging the terms or factors has no effect on the answer, so even if
you express the answer as
(1βˆ’5π‘₯)(5π‘₯+1)
βˆ’25(π‘₯βˆ’5)(π‘₯+5)
, the answer is still the same and
it still does not simplify any further.
(25π‘₯)βˆ’1 βˆ’ π‘₯
Also, keep in mind that in the original expression 25π‘₯ βˆ’1 βˆ’ π‘₯ you cannot
simply move (25π‘₯ )βˆ’1 from the numerator to the denominator to change
the sign of the exponent. Same with 25π‘₯ βˆ’1 ; you must take the reciprocal
to change the sign of the exponent. Moving from numerator to
denominator or vice versa is a shortcut that only works for factors, NOT
terms.
Example 2: Perform the indicated operations and simplify the expressions
completely. Do not include negative exponents in your answer.
a.
3𝑦 βˆ’1 βˆ’ 3π‘₯ βˆ’1
π‘₯ βˆ’2 βˆ’ 𝑦 βˆ’2
b. a
b.
π‘₯𝑦 βˆ’1 βˆ’ (π‘₯𝑦)βˆ’1
π‘₯ βˆ’2 βˆ’ 1
4βˆ’4π‘₯ βˆ’1 +π‘₯ βˆ’2
c.
d. a
4βˆ’π‘₯ βˆ’2
d. (1 βˆ’ 6π‘₯ βˆ’1 + 9π‘₯ βˆ’2 )(π‘₯ 2 βˆ’ 9)βˆ’1
Answers to Examples:
1
1a. βˆ’ 2π‘₯(π‘₯+2) ; 1b.
2
1e. βˆ’ (1βˆ’π‘₯)(1βˆ’π‘¦) ; 1f.
2d.
π‘₯βˆ’3
π‘₯ 2 (π‘₯+3)
;
π‘₯ 2 +π‘₯𝑦+𝑦 2
π‘₯+𝑦
(π‘₯+𝑦)2
π‘₯𝑦
1
2π‘₯+β„Ž
; 1c. βˆ’ π‘₯(π‘₯+β„Ž) ; 1d. βˆ’ π‘₯ 2 (π‘₯+β„Ž)2 ;
; 2a.
βˆ’3π‘₯𝑦
π‘₯+𝑦
π‘₯
; 2b. βˆ’ 𝑦 ; 2c.
2π‘₯βˆ’1
2π‘₯+1
;