ALGEBRA Sec. 02 MathHands.com Márquez FACTOR POLYNOMIALS by GROUPING THE IDEA FACTOR POLYNOMIALS by GROUPING This is a very powerful method. Despite this, it may sometimes fail. It is not always clear if this method will work or not on a particular problem. You must try it and practice. If you can’t factor a polynomial using this method, relax. Later we will learn a few more ideas to factor. Examples 1. 8 + 8y + 6y 3 + 6y 4 8 + 8y + 6y 3 + 6y 4 = (8 · 1 + 8y) + (6y 3 · 1 + 6y 3 · y) (ALA and M.Id) 3 = 8(1 + y) + 6y (1 + y) (D.L.) 3 = (8 + 6y )(1 + y) (D.L.) 3 = 2(4 + 3y )(1 + y) (D.L., BI) note we could, in this case, have used the DL METHOD first, then use the grouping method. 2. 1 + 3x + x2 + 3x3 1 + 3x + x2 + 3x3 = (1 + 3x) + (1 · x2 + 3x · x2 ) (ALA and M.Id) 2 = (1 + 3x) · 1 + (1 + 3x)x (MId, D.L.) 2 = (1 + 3x)(1 + x ) (D.L.) 3. 1 + 3x + x2 + 3x3 Here, we factor the same polynomial as above, but we group not the first two and the last terms, but the first with the third term and we group the second with the fourth, , just for fun. Aside, from fun, this points out that sometimes various arrangements of groupings are effective. 1 + 3x + x2 + 3x3 = 1 + x2 + 3x + 3x3 2 (CoLA, BI) 3 = (1 + x ) + (3x + 3x ) 2 (ALA) 2 = 1 · (1 + x ) + 3x(1 + x ) 2 = (1 + 3x)(1 + x ) (MiD, BI, DL) (BI, DL) 4. 1 + 3x − x2 − 3x3 1 + 3x − x2 − 3x3 = (1 + 3x) + (−x2 + −3x3 ) (ALA) 2 2 = (1 + 3x) + (1 · −x + 3x · −x ) 2 = (1 + 3x) + (1 + 3x)(−x ) (D.L.) 2 = (1 + 3x) · 1 + (1 + 3x)(−x ) 2 = (1 + 3x)(1 + (−x )) 2 = (1 + 3x)(1 + −x ) (MId, N-Expo, CLM) (M.Id) (D.L.) (D.L.(to be continued...)) c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez 1. If possible factor by grouping, if not, state so. 2x3 + x2 + 2x + 1 Solution: 2x3 + x2 + 2x + 1 = 2x3 + x2 + 2x + 1 = (2x + 1) x2 + (2x + 1) 1 = (2x + 1) x2 + 1 (given) (ALA) (DL, BI, note: looks like someone distributed (2x + 1)) (DL) 2. If possible factor by grouping, if not, state so. x3 + x2 + x + 1 Solution: x3 + x2 + x + 1 = x3 + x2 + x + 1 = (x + 1) x2 + (x + 1) 1 = (x + 1) x2 + 1 (given) (ALA) (DL, BI, note: looks like someone distributed (x + 1)) (DL) 3. If possible factor by grouping, if not, state so. x4 + x3 + x + 1 Solution: x4 + x3 + x + 1 = x4 + x3 + x + 1 = (x + 1) x3 + (x + 1) 1 = (x + 1) x3 + 1 (given) (ALA) (DL, BI, note: looks like someone distributed (x + 1)) (DL) 4. If possible factor by grouping, if not, state so. 2x4 + x3 + 2x + 1 c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez Solution: 2x4 + x3 + 2x + 1 = 2x4 + x3 + 2x + 1 = (2x + 1) x3 + (2x + 1) 1 = (2x + 1) x3 + 1 (given) (ALA) (DL, BI, note: looks like someone distributed (2x + 1)) (DL) 5. If possible factor by grouping, if not, state so. 4x3 + x2 + 8x + 2 Solution: 4x3 + x2 + 8x + 2 = 4x3 + x2 + 8x + 2 = (4x + 1) x2 + (4x + 1) 2 = (4x + 1) x2 + 2 (given) (ALA) (DL, BI, note: looks like someone distributed (4x + 1)) (DL) 6. If possible factor by grouping, if not, state so. − 5x6 + x5 + 10x − 2 Solution: − 5x6 + x5 + 10x − 2 = − 5x6 + x5 + 10x − 2 = ( − 5x + 1) x5 + ( − 5x + 1) − 2 = ( − 5x + 1) x5 + − 2 (given) (ALA) (DL, BI, note: looks like someone distributed ( − 5x + 1)) (DL) 7. If possible factor by grouping, if not, state so. x2 − 3x + − 3x + 9 Solution: x2 − 3x + − 3x + 9 = x2 − 3x + − 3x + 9 = (x − 3) x + (x − 3) − 3 = (x − 3) x + − 3 (given) (ALA) (DL, BI, note: looks like someone distributed (x − 3)) (DL) c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez 8. If possible factor by grouping, if not, state so. x8 − 4x7 + − x + 4 Solution: x8 − 4x7 + − x + 4 = x8 − 4x7 + − x + 4 = (x − 4) x7 + (x − 4) − 1 = (x − 4) x7 + − 1 (given) (ALA) (DL, BI, note: looks like someone distributed (x − 4)) (DL) 9. If possible factor by grouping, if not, state so. x5 + x3 + x2 + 1 Solution: x5 + x3 + x2 + 1 = x5 + x3 + x2 + 1 = (x2 + 1) x3 + (x2 + 1) 1 = (x2 + 1) x3 + 1 (given) (ALA) 2 (DL, BI, note: looks like someone distributed (x + 1)) (DL) 10. If possible factor by grouping, if not, state so. x5 + x4 + x3 + x2 + x + 1 Solution: x5 + x4 + x3 + x2 + x + 1 = x5 + x4 + x3 + x2 + x + 1 = (x2 + x + 1) x3 + (x2 + x + 1) 1 = (x2 + x + 1) x3 + 1 (given) (ALA) 2 (DL, BI, note: looks like someone distributed (x + x + 1)) (DL) 11. If possible factor by grouping, if not, state so. 9x3 − 6x2 + 15x + − 3x2 + 2x − 5 c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez Solution: 9x3 − 6x2 + 15x + − 3x2 + 2x − 5 (given) 3 2 2 = 9x − 6x + 15x + − 3x + 2x − 5 (ALA) 2 2 = (3x − 2x + 5) 3x + (3x − 2x + 5) − 1 (DL, BI, note: looks like someone distributed (3x2 − 2x + 5)) (DL) = (3x2 − 2x + 5) 3x + − 1 12. If possible factor by grouping, if not, state so. 2x3 − x2 + − 6x + 3 Solution: 2x3 − x2 + − 6x + 3 = 2x3 − x2 + − 6x + 3 = (2x − 1) x2 + (2x − 1) − 3 = (2x − 1) x2 + − 3 (given) (ALA) (DL, BI, note: looks like someone distributed (2x − 1)) (DL) 13. If possible factor by grouping, if not, state so. 3x7 − x3 + − 9x4 + 3 Solution: 3x7 − x3 + − 9x4 + 3 = 3x7 − x3 + − 9x4 + 3 = (3x4 − 1) x3 + (3x4 − 1) − 3 = (3x4 − 1) x3 + − 3 (given) (ALA) 4 (DL, BI, note: looks like someone distributed (3x − 1)) (DL) 14. If possible factor by grouping, if not, state so. 3y 3 x2 + y 3 + − 3x3 − x c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez Solution: 3y 3 x2 + y 3 + − 3x3 − x = 3y 3 x2 + y 3 + − 3x3 − x = (3x2 + 1) y 3 + (3x2 + 1) − x = (3x2 + 1) y 3 + − x (given) (ALA) 2 (DL, BI, note: looks like someone distributed (3x + 1)) (DL) 15. Factor by grouping if possible. x2 + x + 1 Solution: as is... the grouping method alone fails.... 16. If possible factor by grouping, if not, state so. 3y 3 x2 + y 3 + − 3x3 − x Solution: 3y 3 x2 + y 3 + − 3x3 − x = 3y 3 x2 + y 3 + − 3x3 − x = (3x2 + 1) y 3 + (3x2 + 1) − x = (3x2 + 1) y 3 + − x (given) (ALA) 2 (DL, BI, note: looks like someone distributed (3x + 1)) (DL) 17. If possible factor by grouping, if not, state so. 2 2 x+2 + − x−2 Solution: 2 2 x+2 + − ! 2 2 = x+2 2 = (x + 2) " 2 = (x + 2) " # x−2 + − + (x + 2) − + − # (given) x−2 (ALA) (DL, BI, note: looks like someone distributed (x + 2)) (DL) c 2007-2008 MathHands.com ALGEBRA Sec. 02 MathHands.com Márquez 18. If possible factor by grouping, if not, state so. 2 2 x+2 + − x−2 Solution: 2 2 x+2 = x+2 2 2 = (x + 2) = (x + 2) x−2 + − + − 2 2 + (x + 2) − + − (given) x−2 (ALA) (DL, BI, note: looks like someone distributed (x + 2)) (DL) 19. The Following can be factored using the grouping method. 9x3 + 15x + − 3x2 − 5 A. TRUE B. FALSE 20. The Following can be factored using the grouping method. 9x2 + 15x + − 4x − 5 A. TRUE B. FALSE c 2007-2008 MathHands.com
© Copyright 2026 Paperzz