Skill 5g: Using the Rational Root Theorem

GP2-PAP-S5-HW5 Name:_________________________________________________Period: _______ Seat #______
Skill 5g: Using the Rational Root Theorem
1. List all of the possible zeros of the function 𝑓(π‘₯) = 2π‘₯ 2 + 7π‘₯ + 6 using the rational zero theorem. Then
find the zeros of 𝑓(π‘₯) by factoring and confirm that they are in the list.
Factors of π‘Ž0 :
Factors of π‘Žπ‘› :
List of Possible Zeros:
Actual Zeros:
2. List all of the possible zeros of the function 𝑓(π‘₯) = 5π‘₯ 2 βˆ’ 11π‘₯ + 2 using the rational zero theorem. Then
find the zeros of 𝑓(π‘₯) by factoring and confirm that they are in the list.
Factors of π‘Ž0 :
Factors of π‘Žπ‘› :
List of Possible Zeros:
Actual Zeros:
3. List all of the possible zeros of the function 𝑓(π‘₯) = 4π‘₯ 2 + 24π‘₯ βˆ’ 13 using the rational zero theorem. Then
find the zeros of 𝑓(π‘₯) and confirm that they are in the list.
Factors of π‘Ž0 :
Factors of π‘Žπ‘› :
List of Possible Zeros:
Actual Zeros:
4. List all of the possible zeros of the function 𝑓(π‘₯) = π‘₯ 3 + 9π‘₯ 2 + 20π‘₯ + 12 using the rational zero theorem.
Use synthetic division and then factoring to find all zeros.
5. List all of the possible zeros of the function 𝑓(π‘₯) = 2π‘₯ 3 + 3π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 3 using the rational zero theorem.
Use synthetic division and then factoring to find all zeros.
6. List all of the possible zeros of the function 𝑓(π‘₯) = π‘₯ 3 + 3π‘₯ 2 βˆ’ 6π‘₯ βˆ’ 8 using the rational zero theorem.
Use synthetic division and then factoring to find all zeros.
7. List all of the possible rational zeros of the function 𝑓(π‘₯) = 3π‘₯ 3 βˆ’ 7π‘₯ 2 + 4 using the rational zero theorem.
Use synthetic division and then factoring to find all zeros. At each zero indicate if the graph crosses the x-axis,
or touches the x-axis.
Factors of π‘Ž0 :
Factors of π‘Žπ‘› :
List of Possible Zeros:
Actual Zeros:
8. Factor out the GCF, then list all of the possible rational zeros of the function
𝑓(π‘₯) = π‘₯ 7 + π‘₯ 6 βˆ’ 2π‘₯ 5 βˆ’ 2π‘₯ 4 + π‘₯ 3 + π‘₯ 2 using the rational zero theorem. Use synthetic division and then
factoring to find all zeros. At each zero indicate if the graph crosses the x-axis, or touches the x-axis.
Factors of π‘Ž0 :
Factors of π‘Žπ‘› :
List of Possible Zeros:
Actual Zeros:
9. Factor out the GCF, then list all of the possible rational zeros of the function
𝑓(π‘₯) = 8π‘₯ 5 + 8π‘₯ 3 βˆ’ 160π‘₯ using the rational zero theorem. Use synthetic division and then factoring to find
all zeros. At each zero indicate if the graph crosses the x-axis, or touches the x-axis.
Factors of π‘Ž0 :
List of Possible Zeros:
Actual Zeros:
Factors of π‘Žπ‘› :