Please cite this article as: Grzegorz Biernat, Justyna Mazur, Finite difference method in the Fourier equation with Newton's boundary conditions direct formulas, Scientific Research of the Institute of Mathematics and Computer Science, 2008, Volume 7, Issue 2, pages 123-129. The website: http://www.amcm.pcz.pl/ Scientific Research of the Institute of Mathematics and Computer Science FINITE DIFFERENCE METHOD IN THE FOURIER EQUATION WITH NEWTON’S BOUNDARY CONDITIONS DIRECT FORMULAS Grzegorz Biernat, Justyna Mazur Institute of Mathematics, Czestochowa University of Technology, Poland e-mail: [email protected] Abstract. In the paper we give the direct FDM formulas for the solutions of the Fourier equation with the Newton boundary condition in the x, t case. 1. Formulation of the problem In limited spatial solid (centres) approximate to the one-dimensional case the temperature distribution T x, t with the Newton boundary conditions and determined initial conditions (without the internal heat source) is defined by the equations O w 2 T x, t wx 2 Uc wT x, t wt (1) (heat conduction in the centre-Fourier’s equation) O wT x, t wn xborder D T x, t Tenvironment xborder (2) (heat exchange on the border-Newton’s equation) T x,0 Tinitial (3) where the positive coefficients O , U , c and D we receive as a constant. Classical difference methods lead to the linear systems equations O Ti 1l 2Til Ti 1l 'x 2 where 1 d i d m and l t 1 (internal case) Uc Til Til 1 't (4) Finite Difference Method in the Fourier equation with Newton boundary conditions … 125 T1l Tenv D T0l Tenv °°O 2'x ® °O Tenv 2T0l T1l Uc T0l T0l 1 °¯ 't 'x 2 (5) where l t 1 and Tenv ! T0l ! T1l (border case) Ti 0 (6) Tini where 0 d i d m (initial case) 2. Solution of the problem From the linear system (5) we calculate only T0l with the limitation 1O O 'x 2D D (7) In fact, the first equation from the system (5) gives Tenv T1l 2D O 'xTenv T0l (8) so T0l T1l T0l Tenv 2D O Tenv T0l §¨ 2D 'x 1·¸ 'xTenv T0l © O ¹ (9) and because Tenv T0l ! 0 and T0l T1l ! 0 , that is 2D O 'x ! 1 or 'x ! O 2D (10) And now the linear system (5) gives DT0l O 2'x T1l O · § ¨D ¸Tenv 2'x ¹ © O § Uc 2O · 2 ¸T0l 2 T1l ¨ 'x © 't 'x ¹ O 'x 2 Tenv Uc 't (11) T0l 1 G. Biernat, J. Mazur 126 with the determinant condition D Uc 't O 2O 'x 2 2'x O 'x 2 O Uc D 2O 2'x 't 2 'x 1 2 !0 'x (12) It only needs to point out that the determinant on the right side Uc D 2O 't 'x 2 1 2 'x 2D Uc 2O 'x 't 'x 2 (13) is positive, when 2D 2O 2 'x 'x 2 § O · D ¸ ! 0 ¨ 'x © 'x ¹ (14) so O 'x D ! 0 or 'x O D (15) The solution T0l of linear system (5) has then the next intermediate form Uc 't T0l 1 Uc 2 § O · D ¸ ¨ 't 'x © 'x ¹ T0l 2 § O · D ¸ ¨ 'x © 'x ¹ T env Uc 2 § O · D ¸ ¨ 't 'x © 'x ¹ For the internal linear system (4) and from symmetry condition Tm 1l receive O O Uc § Uc 2O · T1l 1 T 2 ¸T1l 2 T2l ¨ 2 0l t 't ' 'x 'x 'x ¹ © O O Uc § Uc 2O · T2l 1 2 T1l ¨ 2 ¸T2l 2 T3l 't 'x 'x © 't 'x ¹ ....................................................................... O § Uc 2O · Tm 2 l ¨ 2 ¸Tm 1l 2 Tml 'x 'x © 't 'x ¹ Uc 2O § Uc 2O · Tml 1 2 Tm 1l ¨ 2 ¸Tml 't 'x © 't 'x ¹ O 2 Uc 't (16) Tm 1l we (17) Tm 1l 1 Finite Difference Method in the Fourier equation with Newton boundary conditions … 127 with the positive determinant (see [1, 2]) Uc 't DET 2O 'x 2 O 0 'x 2 Uc 2O 't 'x 2 . O 'x 2 . O 'x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . 0 DET Dm O Uc 2O 't 'x 2 'x 2 0 'x 2 Uc 2O 't 'x 2 2O 2 'x O 'x 2 0 O O O 'x 2 Uc 2O 't 'x 2 mum (19) Dm 2 'x 4 (18) where j § j 1·§ Uc 2O · § Uc 2O · ¸¸¨ 2 ¸ ¨¨ 2¸ ¨ © 't 'x ¹ © 1 ¹© 't 'x ¹ Dj j 2 j 4 § j 2 ·§ Uc 2O · O4 ¨ ¸ ... ¸ ¨ 'x 4 ¨© 2 ¸¹© 't 'x 2 ¹ 'x 8 (20) O2 Finally, we can write Uc 't DET 2O 'x 2 O 'x 2 . O 'x 2 Uc 2O 't 'x 2 . 0 O 'x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . 0 O Uc 'x 2 't 2O 'x 2 O 'x 2 0 O 'x 2 Uc 2O 't 'x 2 2O 2 'x (21) 0 O 'x 2 Uc 2O 't 'x 2 mum G. Biernat, J. Mazur 128 § § Uc 2O · m2 O2 m 3 § Uc 2O · m4 O4 · ¨¨ ¸ ¸ ¨ ¸ ¨ © 't 'x 2 ¹ 2! © 't 'x 2 ¹ 'x 8 ¸ 'x 4 ¨ ¸ m m 6 O6 ¨ m 5m 4 § Uc 2O · ¸ § Uc 2O · ¨ 2¸ ¨ 2 ¸ m¨ ¸ 12 ' ' t 3 ! t ' ' ' x x x ¹ © ¹ © ¨ ¸ ¨ m 7 m 6 m 5 § Uc 2O · m8 O8 ¸ ... ¨ ¸ ¨ 2¸ 16 ¨ ¸ ' 4 ! t ' ' x x ¹ © © ¹ DET (22) Next, the algebraic complements of the matrix ª Uc 2O « 't 'x 2 « « O « 'x 2 « . « . « « . « . « « « . « « . « ¬ O 'x 2 Uc 2O 't 'x 2 . . 0 O 'x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 0 O Uc 'x 2 't . 2O 'x 2 O 'x 2 0 . O 'x 2 Uc 2O 't 'x 2 2O 2 'x º » » » . » » . » . » » . » 0 » » O » 2 'x » Uc 2O » » 't 'x 2 ¼ mum . (23) there are the simple induction formes (see [2]) p § · O2 ¨ D D Dm k p 2 ¸¸ for 0 d p d m k 1 ¸ k 1 ¨ m k p 2 4 'x © 'x ¹ © ¹ O · Akk p 12k p §¨ Akm 1 1k m 1 §¨ Uc © 't O · ¨ 2 ¸ x ¹ ' © mk § Amk 2 1 Amm Dm 1 2O ·§ O · ¸ ¸¨ 'x 2 ¹© 'x 2 ¹ m k 1 Dk 1 (24) mk Dk 1 for 1 d k d m 1 according to the formula for D j . Also, the direct solutions of the linear system (17) are given Til Uc Uc Uc § O · T1l 1 ¸ A1i Tm 1l 1 Am 1i Tml 1 Ami ¨ 2 T0l t t ' ' 't © 'x ¹ DET for 1 d i d m 2 (25) Finite Difference Method in the Fourier equation with Newton boundary conditions … Tm 1l Tml Uc Uc Uc § O · T1l 1 ¸ A1m 1 Tm 1l 1 Am 1m 1 Tml 1 Amm 1 ¨ 2 T0l 't 't 't © 'x ¹ DET Uc Uc Uc · § O T1l 1 ¸ A1m Tm 1l 1 Am 1m Tml 1 Amm ¨ 2 T0l 't 't 't ¹ © 'x DET 129 (26) (27) according to the formulas for Apq . References [1] Mostowski A., Stark M., ElemenW\DOJHEU\Z\ĪV]HM, PWN, Warszawa 1970. [2] %LHUQDW*%RU\Ğ-&DáXVLĔVND,6XUPD$The three-band matrices (to appear). [3] Majchrzak E., 0HWRGDHOHPHQWyZEU]HJRZ\FKZSU]HSá\ZLHFLHSáD, Wydawnictwo Politechniki &]ĊVWRFKRZVNLHM&]ĊVWRFKRZD [4] Mochnacki B., Suchy J.S., 0RGHORZDQLH L V\PXODFMD NU]HSQLĊFLD RGOHZyZ, WN PWN, Warszawa 1993. [5] Majchrzak E., Mochnacki B., Podstawy teoretyczne, aspekty praktyczne i algorytmy, WydawnicWZR3ROLWHFKQLNLĝOąVNLHM*OLZLFH
© Copyright 2026 Paperzz