Name: ________________________ Class: ___________________ Date: __________ ID: A Test 4 Review Short Answer 1. Find the general solution of the differential equation below and check the result by differentiation. dY 9 u du 4 7. Find the indefinite integral x 2 3 x 3 dx . 8. Find the indefinite integral of the following function. 5 4 sin5z dz 2. Use the error formula to estimate the error in 6 Ê ˆ5 9. Find the indefinite integral t 3 ÁÁÁ 5 t 4 ˜˜˜ dt . Ë ¯ approximating the integral (9x 1) dx with n 4 3 using Trapezoidal Rule. Ê ˆ 5 ÁÁ x 2 5 ˜˜ Ë ¯ 10. Find the average value of f (x ) on the 2 x È ˘ interval ÍÍÎ 1,3˙˙˚ . 3. Find the smallest n such that the error estimate in the approximation of the definite integral 1 2cos(x) dx is less than 0.00001 using Simpson's 11. Find the average value of the function over the given interval and all values t in the interval for which the function equals its average value. 0 Rule. 4. Use the Trapezoid Rule to approximate the value of f (t ) 2 the definite integral x 4 dx wth n 4. Round your 0 Use a graphing utility to verify your results. answer to four decimal places. 12. Find the indefinite integral 5. Find the indefinite integral of the following function and check the result by differentiation. (5 s ) 5 (1 4z) 5 dz . È ˘ 13. Determine all values of x in the interval ÍÍÎ 1,3˙˙˚ for Ê ˆ 4 ÁÁ x 2 1 ˜˜ Ë ¯ equals its which the function f (x ) 2 x 16 average value . 3 s ds 6. Evaluate the following definite integral. 0 t2 4 ,1t5 t2 Ê ˆ z cos ÁÁÁ 7z 2 ˜˜˜ dz Ë ¯ 14. Find the area of the region bounded by the graphs of the equations y x 3 x, x 4, y 0 . Round your answer to the nearest whole number. Use a graphing utility to check your answer. 1 Name: ________________________ ID: A 15. Determine the area of the given region. 1 3 2 19. Evaluate the definite integral of a function u du. y x sinx, 0 x 0 Use a graphing utility to verify your results. 20. Evaluate the integral. 4 ˆ Ê ÁÁÁË 24x 2 1˜˜˜¯ d x 3 given, 4 x 3 dx 175 , 4 3 4 16. Evaluate the definite integral of the trig function. 5 0 x 2 dx 37 , 3 3 (3sinx 4 cos x)dx 4 x dx Use a graphing utility to verify your results. 7 , 2 3 17. Evaluate the definite integral of the algebraic function. 5 0 4 dx 1 . 3 4 x 4 dx 21. Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. Use a graphing utility to verify your results. 18. Evaluate the definite integral of the function. a 5x (2t 5cos t ) dt a 2 z2 d z a 0 22. Write the following limit as a definite integral on the interval [2 , 5], where ci is any point in the ith subinterval. Use a graphing utility to verify your results. n lim ÁÊË 7c i 2˜ˆ¯ x i x 0 i 1 2 Name: ________________________ ID: A 23. Write the following limit as a definite integral on ˘ È the interval ÍÍÎ 2, 8 ˙˙˚ where ci is any point in the i th subinterval. 27. Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 1 n lim x 0 i 1 ÊÁË 1 u ˆ˜¯ d u 3c 2i 4c i x i 1 ÊÁ ˆ˜ ÁÁ 6 ˜˜ 24. Write the limit lim ÁÁÁÁ 2 ˜˜˜˜ x i , as a definite 0 i 1 Á ÁË c i ˜˜¯ ˘ È integral on the interval ÍÍÎ 8, 10 ˙˙˚ , where ci is any point in the i th subinterval. 28. Evaluate the following definite integral by the limit definition. 25. The graph of the function f (x ) 16 x 2 is given below. Which of the following definite integrals yields the area of the shaded region? 29. Use the summation formulas to rewrite the n 1 5s 3 ds 2 n expression 24k (k7 1) k1 n without the summation notation. 30. Find the limit. n Ê ˆÊ ˆ n i 1Ë ¯Ë ¯ lim ˜˜ ÁÁ 8 ˜˜ ˜Á ˜ ÁÁÁÁÁ 10i n ˜˜ ÁÁ n ˜˜ 31. Use the limit process to find the area of the region between the graph of the function y 16 x 2 and ˘ È x-axis over the interval ÍÍÎ 4,4 ˙˙˚ . 32. Find the sum given below. 8 26. Evaluate the following definite integral by the limit definition. k (k 4) k3 4 Ê ˆ ÁÁÁË 9s 2 4˜˜˜¯ ds 33. Use sigma notation to write the sum 5 5 5 5 . 1 22 11 12 13 2 3 Name: ________________________ ID: A 34. Solve the differential equation. 41. The diagram below shows upper and lower sums for the function dP 15x 4 5, P (2) 8 dx using 4 subintervals. Use upper and lower sums to approximate the area of the region using the 4 subintervals. 35. Find the limit of s (n) as n . 5 s (n ) 3 n ÈÍ ˘ ÍÍ n 3 (n 1) 2 ˙˙˙ ÍÍ ˙˙ ÍÍ ˙˙ ÍÍ ˙˙ 7 ÍÍÎ ˙˙˚ 36. The maker of an automobile advertises that it takes 12 seconds to accelerate from 30 kilometers per hour to 85 kilometers per hour. Assuming constant acceleration, compute the acceleration in meters per second per second. Round your answer to three decimal places. 37. A ball is thrown vertically upwards from a height of 10 ft with an initial velocity of 30 ft per second. How high will the ball go? Note that the acceleration of the ball is given by a(t) 32 feet per second per second. 42. Find the indefinite integral ÁÊÁË 12u 43. Find the indefinite integral ÊÁÁË 12s 38. Find the indefinite integral 10 sins 7cos s ds . 39. Find the indefinite integral and check the result by differentiation. 3z 2 12z 9 dz z4 40. Find the indefinite integral 13 x 8 dx. 4 2 3 ˆ 4u ˜˜ du . ¯ ˆ 12s 3 ˜˜ ds . ¯ ID: A Test 4 Review Answer Section SHORT ANSWER 1. ANS: 9 4 Y (u ) u C PTS: 1 DIF: Medium REF: 4.1.7 OBJ: Calculate the general solution of a differential equation NOT: Section 4.1 2. ANS: 0 MSC: Skill PTS: 1 DIF: Easy REF: 4.6.24a OBJ: Estimate the error in using the Trapezoidal Rule to approximate a definite integral MSC: Skill NOT: Section 4.6 3. ANS: 19 PTS: 1 DIF: Medium REF: 4.6.33b OBJ: Identify the smallest value of n needed to approximate a definite integral to within a desired degree of accuracy MSC: Skill NOT: Section 4.6 4. ANS: 7.0625 PTS: 1 DIF: Easy REF: 4.6.1 OBJ: Approximate a definite integral using the Trapezoidal Rule MSC: Skill NOT: Section 4.6 5. ANS: 3 5 10 2 2 2 s s C 5 3 PTS: 1 DIF: Easy REF: 4.5.37 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.5 6. ANS: 0 MSC: Skill PTS: 1 DIF: Medium REF: 4.5.85 OBJ: Evaluate the definite integral of a function using substitution MSC: Skill NOT: Section 4.5 1 ID: A 7. ANS: 3 Ê ˆ 2 ÁÁÁ 3 x 3 ˜˜˜ 2 Ë ¯ C 9 PTS: 1 DIF: Medium REF: 4.5.20 OBJ: Evaluate the indefinite integral of a function using substitution MSC: Skill NOT: Section 4.5 8. ANS: cos5 z C 5 PTS: 1 DIF: Easy REF: 4.5.47 OBJ: Evaluate the indefinite integral of a function using substitution MSC: Skill NOT: Section 4.5 9. ANS: ÊÁ ˆ6 ÁÁ 5 t 4 ˜˜˜ Ë ¯ C 24 PTS: 1 DIF: Easy REF: 4.5.15 OBJ: Evaluate the indefinite integral of a function using substitution MSC: Skill NOT: Section 4.5 10. ANS: 40 3 PTS: 1 DIF: Easy REF: 4.4.52a OBJ: Calculate the average value of a function over a given interval MSC: Skill NOT: Section 4.4 11. ANS: 9 The average is and the point at which the function is equal to its mean value is 5 5. PTS: 1 DIF: Medium REF: 4.4.52 OBJ: Calculate the average value of a function over a given interval and identify the point at which it occurs MSC: Skill NOT: Section 4.4 12. ANS: 6 (1 4z) C 24 PTS: 1 DIF: Easy REF: 4.5.11 OBJ: Evaluate the indefinite integral of a function using substitution MSC: Skill NOT: Section 4.5 2 ID: A 13. ANS: x 3 PTS: 1 DIF: Easy REF: 4.4.52b OBJ: Identify the points where a function equals its average value over a given interval MSC: Skill NOT: Section 4.4 14. ANS: 72 PTS: 1 MSC: Application 15. ANS: 0.5 2 2 DIF: Medium NOT: Section 4.4 REF: 4.4.40 OBJ: Calculate the area bounded by a function PTS: 1 MSC: Application 16. ANS: –6 DIF: Medium NOT: Section 4.4 REF: 4.4.38 OBJ: Calculate the area bounded by a function PTS: 1 DIF: Easy REF: 4.4.27 OBJ: Evaluate the definite integral of a function NOT: Section 4.4 17. ANS: 98 PTS: 1 DIF: Medium REF: 4.4.23 OBJ: Evaluate the definite integral of a function NOT: Section 4.4 18. ANS: 25 2 PTS: 1 DIF: Easy REF: 4.4.34 OBJ: Evaluate the definite integral of a function NOT: Section 4.4 19. ANS: 2 5 PTS: 1 DIF: Medium REF: 4.4.16 OBJ: Evaluate the definite integral of a function NOT: Section 4.4 20. ANS: 295 PTS: 1 DIF: Easy REF: 4.3.38 OBJ: Evaluate the definite integral of a function NOT: Section 4.3 3 MSC: Skill MSC: Skill MSC: Skill MSC: Skill MSC: Skill ID: A 21. ANS: a2 2 PTS: 1 MSC: Skill 22. ANS: DIF: Easy NOT: Section 4.3 REF: 4.3.32 OBJ: Evaluate a definite integral geometrically 5 (7x 2)dx 2 PTS: 1 DIF: Easy REF: 4.3.9 OBJ: Evaluate a definite integral by the limit definition NOT: Section 4.3 23. ANS: MSC: Skill 8 3x 2 4x dx 2 PTS: 1 DIF: Easy REF: 4.3.11 OBJ: Write a limit as a definite integral on an interval NOT: Section 4.3 24. ANS: MSC: Skill 10 x 2 dx 6 8 PTS: 1 DIF: Easy REF: 4.3.12 OBJ: Write a limit as a definite integral on an interval NOT: Section 4.3 25. ANS: MSC: Skill 4 Ê ˆ ÁÁÁË 16 x 2 ˜˜˜¯ dx 4 PTS: 1 DIF: Easy REF: 4.3.17 OBJ: Write a definite integral for a bounded region NOT: Section 4.3 4 MSC: Skill ID: A 26. ANS: 240 PTS: 1 DIF: Easy REF: 4.3.8 OBJ: Evaluate a definite integral by the limit definition NOT: Section 4.3 27. ANS: 1 PTS: 1 MSC: Skill 28. ANS: 75 4 DIF: Easy NOT: Section 4.3 REF: 4.3.29 PTS: 1 DIF: Easy REF: 4.3.5 OBJ: Evaluate a definite integral by the limit definition NOT: Section 4.3 29. ANS: 8 8 6 4 n n PTS: 1 DIF: Medium REF: 4.2.47 OBJ: Rewrite a sum without summation notation NOT: Section 4.2 30. ANS: 40 PTS: 1 MSC: Skill 31. ANS: 256 3 DIF: Medium NOT: Section 4.2 REF: 4.2.50 MSC: Skill OBJ: Evaluate a definite integral geometrically MSC: Skill MSC: Skill OBJ: Evaluate an infinite limit of a sum PTS: 1 DIF: Medium REF: 4.2.62 OBJ: Calculate the area bounded by a function using the limiting process MSC: Application NOT: Section 4.2 32. ANS: 67 PTS: 1 MSC: Skill DIF: Easy NOT: Section 4.2 REF: 4.2.2 5 OBJ: Calculate a sum given in sigma notation ID: A 33. ANS: 22 1 5 j j1 PTS: 1 DIF: Easy MSC: Skill NOT: Section 4.2 34. ANS: P (x ) 3x 5 5x 94 REF: 4.2.8 OBJ: Write a sum in sigma notation PTS: 1 MSC: Skill 35. ANS: unbounded DIF: Medium NOT: Section 4.1 REF: 4.1.59 OBJ: Solve a differential equation PTS: 1 MSC: Skill 36. ANS: 1.273 m/sec2 DIF: Medium NOT: Section 4.2 REF: 4.2.37 OBJ: Evaluate limits at infinity PTS: 1 MSC: Application 37. ANS: 24.0625 ft DIF: Medium NOT: Section 4.1 REF: 4.1.85a OBJ: Calcuate the acceleration PTS: 1 DIF: Medium REF: 4.1.71 OBJ: Solve differential equations related to position/velocity/acceleration MSC: Application NOT: Section 4.1 38. ANS: 10 cos s 7sin s C PTS: 1 DIF: Easy REF: 4.1.35 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.1 39. ANS: 3 6 3 2 3 C z z z PTS: 1 DIF: Medium REF: 4.1.28 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.1 40. ANS: 13 21 13 x C 21 PTS: 1 DIF: Easy REF: 4.1.23 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.1 6 MSC: Skill MSC: Skill MSC: Skill ID: A 41. ANS: lower: 1.166 ; upper: 1.666 PTS: 1 DIF: Medium REF: 4.2.42 OBJ: Estimate the area of a region using upper and lower sums MSC: Skill NOT: Section 4.2 42. ANS: 4u 3 2u 2 C PTS: 1 DIF: Easy REF: 4.1.17 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.1 43. ANS: 3s 4 6s 2 3s C PTS: 1 DIF: Easy REF: 4.1.20 OBJ: Evaluate the indefinite integral of a function NOT: Section 4.1 7 MSC: Skill MSC: Skill
© Copyright 2026 Paperzz