PRACTICETEST#3 1 2 MACH5 dy (1)(sin x) (x)(cos x) sin x x cos x dx f (x) 300x x 3 increasing when f '(x) 0 y x sin x SOLUTIONS B f '(x) 300 3x 2 3(10 x)(10 x) 0 when 10 x 10 or 10,10 3 4 5 d sec x sec x tan x A dx 1 1 f (x) 7x 3 ln x f '(x) 7 f '(1) 7 8 E x 1 lim f (x) 2 lim f (x) 4 hence lim f (x) does not exist C sec x tan x dx sec x C x 4 6 B x 4 x 4 v(t) 6t t 0 on 0, 3 2 Total Distance 3 0 3 v(t) dt 6t t dt 2 0 y' 5 x 3 0 3x 3 t3 6t t dt 3t 27 9 18 D 30 2 2 7 y x 3 cos x 8 right Riemann sum 50 R(t)dt 50 3(6.2) 5(5.9) 3(5.6) 114.9 liters C 9 (2x 1)(x 2) lim lim(2x 1) 5 k E x2 x2 x2 10 y e x 2 0 on 0,2 so area 5 3 cos x 4 2 sin x E 15 0 11 f (x) 2 0 2 0 x 2 1 (2 x)1 2 , x 2 2 f '(x) 1 lim f (x) so f not differentiable 1 2 x2 (x 2) , x 2 x 2, x 2 2 1 1 u x, du dx 2du dx and when x 4,u 4 2, when x 1,u 1 1 2 x x f (x) 4 1 13 A x 2 f (2) 0 so C and E are false. lim f (x) lim f (x) 0 so D is false and f is continuous x2 12 e x 2 dx 2e x 2 2 e1 e0 2e 2 e x x 2 x, x 2 2 dx 2 eu du A C 1 5 14 x2 15 3 25 9 f (x)dx 2 dx (x 1)dx 2x x 6 2 5 3 4 10 D 1 1 1 3 2 2 2 2 2 3 d d 7 7 A 3 f (g(x) f 'g(x)g '(x) so f (g(x)x 3 f 'g(3)g '(3) f '(7)g '(3) dx dx 3 5 5 1 2 7 7 f '(x) 12 x 2 4 (2x) f '(7) and g '(x) g '(3) 3 45 3 5 15 h(x) x h(6) 6 5 3 0 0 5 3 f (t)dt h '(x) f (x) f (t)dt 0 since below the x axis; h'(6) f (6) 0; h"(6) f '(6) 0 since f increasing around 6. So, h(6) h '(6) h"(6) A PRACTICETEST#3 MACH5 SOLUTIONS 16 x(t) (t a)(t b) t 2 at bt ab x '(t) v(t) 2t a b 0 t 17 f (x) 18 19 x 2 ab 2 B g(t)dt f '(x) g(x) a positive constant since f is increasing at a constant rate. A 1 ln(4 h) ln(4) f '(4) B h0 4 h x (x 2)(1) x(1) 2 1 f (x) f '(x) 2 2 x2 (x 2) (x 2) 2 f (x) ln x lim (x 2)2 4 x 2 2 x 0,4 f (0) 0, f (4) 2 C 20 f (x) (2x 1)3; f (0) 1 so g(1) 0; f '(x) 3(2x 1)2 2 6(2x 1)2 f '(0) 6 g '(x) 21 1 1 1 1 g '(1) f 'g(x) f 'g(1) f '0 6 D 20x 2 x 5 E x 1 4x 2 horizontal asymptote: lim y 5 so take the limit of each: lim x 22 23 24 25 x 1x ln x 1 ln x ln x f (x) , x 0 f '(x) 0 ln x 1 x e; f ' 0, 0 x e; f ' 0, x e x2 x x2 ln e 1 B So relative maximum and absolute maximum value is f (e) e e dP When is constant, then growth is constant and linear. A dt 2 2 2 g(x) x 2 ekx g '(x) 2xekx k ekx 2x g ' 2 e(2 3) k k e(2 3) k 2 0 3 3 3 4 4 4 4 4 4 e(2 3) k k 0 k 0 k k 3 A 9 3 3 9 3 9 dy 2 sin x dx y 2 cos x C y( ) 1, 1 2 cos C 1 2(1) C C 1 y 2 cos x 1 E 26 Since et is always positive, then g '(2) 2 g"(x) e 27 x2 0 et dt 0 so g is increasing on the interval. 2 0 so g is concave up on the interval. A dy 2 x y d y ( x 2 y )(2 ) (2 x y )(1 2 ) dy 2 2 2 dx x 2 y dx dx (3,0) ( x 2 y) 2 dy dx d2y (3)(0) (6)(5) 30 10 2 2 dx (3,0) (3) 9 3 28 2 dy dx A 3 ; 4 2 2 3 2 A a(t) v'(t) sin t cost a 4 2 2 v(t) x '(t) cost sint 0 tan t 1 t PRACTICETEST#3 29 MACH5 f ' f increasing c, e; f 'increasing f " concave up d, e E SOLUTIONS 30 From the IVT, f (x) 13 for some x on 2, 4 since f (2) 10 and f (4) 20. A 31 y e tan x 2 0 e tan x 2 tan x ln 2 x tan 1 ln 2 0.60611193 store as "a" Using calculator: y'(a) 2.9609 2.961 32 33 D 8 1 Average value of the velocity on 0, 8 v(t)dt B 80 0 I. f ' changes from to at x 3 : true II. f ' changes from inc to dec or dec to inc at x 2 : false III. f ' decreases on 0 x 4 : true 34 E 20 Water in the tank = initial amount + amount pumped in 800 r(t)dt 1220gal 0 35 36 D Graph f '(x) and find that the relative maximum occurs at x 0.350 C An estimate for the distance traveled is an estimate of the area below the curve on the interval 0 x 8. One estimate would be to connect v(0) and v(8) with a straight line and use the 1 area of the triangle as the estimate: (8)(50) 200 close to 210 D 2 37 38 39 x f "(x) (4x 3 4x)e 4 . Graph f "(x) and find where it is below the x axis : (1.5, 1) and 0,1 D 2 x 2 1 f has a relative maximum at x 1 because f ' changes from + to - there. C f ' 0 so f increases for all x and 7 4 f (t)dt 0 so f is both negative and positive on 4, 7 so not A, D, or E 41 3 3 6 0 So, B 2 75 f is concave down when f " 0 or when its graph is below the x axis : 2 x 1 and 1 x 3 E 6 2 15 15s 6x 6s 9s 6x s x 3 xs s 8 ft ft ds 2 dx 2 (4) 2.667 B 3 sec sec dt 3 dt 3 42 v(3) v(0) v '(t)dt v(0) a(t)dt 5 6.710 11.710 For C: slope 40 43 3 0 0 Let t 2x, so dt 2dx dx E 1 dt and x 12 t 2(12) 24; x 6 t 2(6) 12 2 24 1 24 f (t)dt 10 f (t)dt 20 B 6 12 2 12 f ' changed from decreasing to increasing somewhere on 2 x 3, and increasing to decreasing somewhere 44 3 12 f (2x)dx 10 on 3 x 6. So f " changed signs at least once on these intervals f has at least 2 inflection points B PRACTICETEST#3 45 MACH5 Area of the cross sectional square = s 2 Volume xx x x dx 0.12857 0.129 1 0 2 2 2 A 2 SOLUTIONS
© Copyright 2026 Paperzz