Supplement of Atmos. Chem. Phys., 16, 11001–11018, 2016 http://www.atmos-chem-phys.net/16/11001/2016/ doi:10.5194/acp-16-11001-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes Matthieu Riva et al. Correspondence to: J. D. Surratt ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Table S1. Proposed structures, retention times, formulas and accurate masses of organosulfates (OSs) identified in dodecane, decalin and cyclodecane SOA. [M - H]- ion (m/z) VOC Retention time (min) Measured mass Error (ppm) Q-TOFMS suggested formula DBE Proposed structure 195 Decalin 7.93 195.0697 3.03 C7H15O4S− 0 Not Identified 209 Dodecane 6.75 209.0472 5.62 C7H13O5S− 1 Not Identified 237 Dodecane 9.12 237.0786 4.67 C9H17O5S− 1 Not Identified 8.51 249.0807 2.84 249 251 255 C10H17O5S− Cyclodecane 9.31 249.0797 1.5 8.51 251.0950 1.28 Cyclodecane Dodecane O 9.31 251.0953 0.10 8.87 255.0914 4.56 OSO3 2 OH C10H19O5S− 1 C9H19O6S− 1 OSO3 Not Identified S2 HO 265 Cyclodecane 6.40 265.0747 1.41 C10H17O6S− O 2 OSO3 265 267 Decalin Decalin 4.40 265.0749 1.18 5.80 265.0757 4.19 6.75 265.0742 1.45 8.10 265.0754 3.06 6.38 267.0553 0.02 7.20 267.0550 2.55 O C10H17O6S− 2 OSO3 OH O C9H15O7S − 2 OOH OSO3 OH 8.98 267 269 279 267.0914 2.16 C10H19O6S− Cyclodecane Decalin Cyclodecane 9.61 267.0903 1.70 8.04 269.0696 0.73 5.77 279.0554 2.05 6.76 279.0551 5.40 1 C9H17O7S− 1 C10H15O7S− 3 OH OSO3 OOH OH OSO3 Not Identified S3 279 Dodecane 11.73 279.1256 3.66 12.04 279.1254 4.37 12.44 279.1265 0.43 C12H23O5S− 1 O OSO3 OH 6.98 281.0698 0.64 7.27 281.0705 2.00 O Cyclodecane 281 OH C10H17O7S− OSO3 2 O Decalin 8.01 281.0702 OH 1.20 OH OSO3 6.22 285 285.0651 C9H17O8S− Decalin 6.51 285.0648 OH OH 0.95 OSO3 1 0.58 OOH 295 Decalin 6.84 295.0495 1.19 7.10 295.0505 4.44 7.62 295.0506 5.16 O C10H15O8S− 3 O OH OSO3 HO S4 297 299 307 311 326 Decalin 6.84 297.0657 4.31 7.62 297.0645 0.27 8.30 297.0652 2.63 7.65 299.0805 2.05 Decalin Dodecane 7.88 299.0801 1.26 7.93 307.0833 4.49 6.57 311.0444 0.23 Decalin Decalin O C10H17O8S− 311.0450 1.98 7.26 326.0551 1.59 8.14 326.0550 1.28 9.38 326.0554 2.51 9.95 326.0557 3.43 OSO3 HOO OH C10H19O8S− 1 Not Identified C12H19O7S− 3 Not Identified O C10H15O9S 7.00 2 − OOH OSO3 3 O ONO2 C10H16NO9S− HO OH OSO3 3 O S5 Table S2. Concentrations (ng m-3) of OSs quantified (using methanol) in dodecane chamber experiments in presence of ammonium sulfate aerosol. Ratios of OS quantified using acetonitrile/toluene (ACN-Tol) divided by OS quantified using methanol as solvent mixture are also reported. No-Ac Dry Ac-Dry No-Ac Wet Ac-Wet C7H13O5S− 0.58 0.57 0.93 0.92 0.75 0.78 0.99 ± 0.11 C9H17O5S− 2.87 2.80 1.97 2.48 3.16 3.54 0.82 ± 0.20 C9H19O5S− 2.65 3.10 3.10 3.33 3.66 4.19 0.95 ± 0.20 C12H23O5S− 1.98 7.76 1.45 2.65 1.75 8.20 1.81 ± 0.37 C12H19O7S− 0.82 1.18 0.47 0.71 1.41 1.76 1.67 ± 0.43 Sum 8.92 15.41 7.92 10.11 10.74 18.45 1.28 ± 0.12 [M - H] − (209.0472)a,b (237.0786)a,b (255.0914)a,b (279.1254)c,d (307.0040)a,b a Ac-Wet Ac-Dry ACNTol/Methanol − Quantified using 3-pinanol-2-hydrogen sulfate (C9H13O6S ) as a surrogate standard, b OSs belonging to Group−2, c quantified using octyl sulfate as a surrogate standard, d OSs belonging to Group−1. Different isomers for one ion have been summed; Ac. and No Ac. correspond to acidified and noacidified sulfate seed aerosol, respectively. S6 Table S3. Concentrations (ng m-3) of OSs quantified (using methanol) in decalin chamber experiments in presence of ammonium sulfate aerosol. Ratios of OS quantified using acetonitrile/toluene (ACN-Tol) divided by OS quantified using methanol as solvent mixture are also reported. No-Ac Dry Ac-Dry No-Ac Wet Ac-Wet C7H15O4S− 26.9 47.4 19.6 29.7 33.1 33.0 0.84 ± 0.23 C10H17O6S− 12.1 54.3 23.2 49.7 25.5 37.8 1.66 ± 0.45 C9H15O7S− 17.3 78.6 23.1 41.3 36.1 70.5 1.81 ± 0.42 C9H17O7S− 58.4 72.5 36.5 49.7 61.4 63.0 1.07 ± 0.20 C10H17O7S− 16.7 61.4 21.0 43.4 22.5 48.1 2.04 ± 0.26 C9H17O8S− 48.4 349.6 96.1 279.1 129.4 114.5 1.88 ± 0.55 C10H15O8S− 41.0 90.3 27.7 46.0 40.7 82.0 2.11 ± 0.75 C10H17O8S− 16.3 51.5 20.4 37.5 19.1 28.7 2.07 ± 0.38 C10H19O8S− 6.7 41.7 5.1 8.8 5.2 20.3 1.72 ± 0.37 C10H15O9S− 20.3 40.2 22.9 36.3 17.5 40.7 2.13 ± 0.26 C10H16NO9S− 7.9 54.0 38.8 104.4 27.1 71.6 3.03 ± 0.62 Sum 272.0 941.9 334.4 726.0 417.7 610.1 1.78 ± 0.16 [M - H] − (195.0697)a,b (265.0749)a,c (267.0553)a,c (269.0696)a,b (281.0702)a,c (285.0651)a,c (295.0495)a,c (297.0657)a,b (299.0805)a,c (311.0444)a,c (326.0551)a,c a Ac-Wet Ac-Dry ACNTol/Methanol Quantified using 3-pinanol-2-hydrogen sulfate (C9H13O6S−) as a surrogate standard, b OSs belonging to Group−2, c OSs belonging to Group−1. Different isomers for one ion have been summed; Ac. and No Ac. correspond to acidified and no-acidified sulfate seed aerosol, respectively. S7 Table S4. Concentrations (ng m-3) of OSs quantified (using methanol) in cyclodecane chamber experiments in presence of ammonium sulfate aerosol. Ratios of OS quantified using acetonitrile/toluene (ACN-Tol) divided by OS quantified using methanol as solvent mixture are also reported. [M - H] − C10H17O5S− (249.0807)a,b C10H19O5S− (251.0950)a,b C10H17O6S− (265.0747)a,b C10H19O6S− (267.0914)a,b C10H15O7S− (279.0554)a C10H17O7S− (281.0698)a,b Sum a No-Ac Dry Ac-Dry No-Ac Wet 2.5 48.1 3.9 4.6 3.2 26.5 2.30 ± 0.33 3.2 39.2 3.8 4.6 4.1 24.4 1.92 ± 0.10 10.4 40.8 7.4 9.4 5.5 44.0 1.52 ± 0.30 4.6 39.4 5.0 5.7 9.4 22.9 1.36 ± 0.10 N.d. 6.4 N.d. N.d. N.d. 2.5 5.8 28.3 3.9 4.4 4.5 19.3 1.64 ± 0.28 26.5 202.3 23.9 28.8 26.7 139.6 1.74 ± 0.15 Ac-Wet Ac-Wet Ac-Dry ACNTol/Methanol − Quantified using 3-pinanol-2-hydrogen sulfate (C9H13O6S ) as a surrogate standard, b OSs belonging to Group−1. Different isomers for one ion have been summed; N.d.: not detected; Ac. and No Ac. correspond to acidified and no-acidified sulfate seed aerosol, respectively. S8 Relative Abundance 100 96.9615 HSO4− 80 279.1265 C12H23O5S− 60 40 20 199.1708 C12H23O2− 0 80 Figure S1. 120 160 200 m/z 240 280 MS2 spectrum obtained for dodecane-derived OS-279 (m/z 279.1274). Fragmentation scheme is proposed in Figure 1. S9 O O − SO3 O OH 185.1218 C10H17O3− a OSO3 OH 265.0752 C10H17O6S− − HSO4− O O b OOH OOH OOH O OSO3 − HSO4− O − SO3 HO HO − H2O OOH 189.1110 C9H17O4− 269.0696 C9H17O7S− − SO3/− OOH OSO3 251.0573 C9H15O6S− O HO S10 O O c O O OH O O O OH 295.0494 C10H15O8S− OH OH −SO3 HO −HSO3− O O OSO3 −HSO4− HO 215.0934 C10H15O5− O − CO2 OSO3 O O HO −SO3 OH HO O 251.0583 C9H15O6S− O 171.1051 C9H15O3− OH OSO3 O 263.0572 C10H15O6S− − HNO3 ONO2 ONO2 OH O OSO3 d O 326.0554 C10H16NO9S− − HSO4− −SO3/− O ONO2 OH O O Figure S2. Fragmentation schemes for selected decalin-derived OSs: a) m/z 265.0752 (C10H17O6S–), (b) m/z 269.0696 (C9H17O7S–), (c) m/z 295.0494 (C10H15O8S–) and (d) m/z 326.0554 (C10H16NO9S–). MS2 spectra are reported in Figure 2. S11 Relative Abundance 100 96.9618 HSO4− 80 187.0947 C9H15O4− 60 267.0552 C9H15O7S− 40 20 0 80 120 160 200 240 280 m/z O O − SO3 OOH O 187.0947 C9H15O4− OOH OSO3 267.0552 C9H15O7S− − HSO4− O OOH Figure S3. MS2 spectrum and fragmentation scheme of ion at m/z 267.0552 identified in SOA formed from decalin oxidation. S12 Relative Abundance 100 96.9601 HSO4− 80 60 40 281.0702 C10H17O7S− 201.1132 C10H17O4− 20 0 80 120 160 200 m/z 240 O 280 OH OH O −SO3 OH OH OSO3 281.0702 C10H17O7S− O 201.1132 C10H17O4− O −HSO4− O OH Figure S4. MS2 spectrum and fragmentation scheme of the parent ion at m/z 281.0702 identified in SOA formed from decalin oxidation. S13 285.0654 C9H17O8S− Relative Abundance 100 80 60 96.9612 HSO4− 205.1081 C9H17O5− 40 20 80.9150 HSO3− 0 80 120 160 200 240 280 m/z OH O OOH −HSO4− OH OH OSO3 OOH 285.0654 C9H17O8S− OH OH −HSO3− O OOH −SO3 OH OH O OOH 205.1081 C9H17O5− Figure S5. MS2 spectrum and fragmentation scheme of the parent ion at m/z 285.0654 identified in SOA formed from decalin oxidation. S14 96.9608 HSO4− Relative Abundance 100 80 60 297.0657 C10H17O8S− 217.1065 C10H17O5− 40 279.0515 C10H15O7S− 20 0 80 120 160 200 m/z 240 280 O −HSO4− HOO O O OSO3 HOO O OH 297.0657 C10H17O8S− OSO3 −H2O O −SO3 O OH 279.0515 C10H15O7S− O HOO OH 217.1065 C10H17O5− Figure S6. MS2 spectrum and fragmentation scheme of the parent ion at m/z 297.0669 identified in SOA formed from decalin oxidation. S15 Relative Abundance 100 96.9609 HSO4− 80 60 311.0447 C10H15O9S− 40 20 0 80 O 120 160 200 m/z 240 280 O OOH OOH OSO3 O HO 320 O −HSO4− O 311.0427 C10H15O9S− Figure S7. MS2 spectrum and fragmentation scheme of the parent ion at m/z 311.0427 identified in SOA formed from decalin oxidation. S16 OH/O2 O2 RO2/HO2 O −H2O O2 O OO HO2 RO2/HO2 O a 1,6-H O O OOH C10H18O3 OOH O b c 1,5-H/O2 OH − H2O O O O OH OOH OOH OO OO HO2 − OH O HO2 O OH O OOH C10H18O4 H+ Gas Phase 1,5-H − OH OH Particle Phase O − H2O/ OH OOH OSO3 O OOH OOH C10H18O5 O OH O O OH H+ OS-265 C10H17O6S− O Gas Phase Particle Phase O O OH OSO3 OH OSO3 OS-281 C10H17O7S− HOO OH OS-297 C10H17O8S− Figure S8. Tentatively proposed formation pathways of OS-265 (265.0752), OS-281 (281.0702) and OS-295 (295.0494) from the oxidation of decalin in the presence of ammonium sulfate aerosol. S17 249.0807 C10H17O5S− Relative Abundance 100 80 60 96.9601 HSO4− 40 20 0 80 120 160 m/z 200 O 240 O OSO3 − HSO4− 249.0807 C10H17O5S− Figure S9. MS2 spectrum and fragmentation scheme of the parent ion at m/z 249.0807 identified in SOA formed from cyclodecane oxidation. S18 Relative Abundance 100 96.9592 HSO4− 251.0953 C10H19O5S− 80 60 40 20 80 120 160 m/z OH 200 240 O OSO3 − HSO4− 251.0953 C10H19O5S− Figure S10. MS2 spectrum and fragmentation scheme of the parent ion at m/z 251.0953 identified in SOA formed from cyclodecane oxidation. S19 Relative Abundance 100 96.9588 HSO4− 265.0747 C10H17O6S− 80 60 40 20 0 80 120 HO 160 m/z O 200 240 O O − HSO4− OSO3 265.0747 C10H17O6S− Figure S11. MS2 spectrum and fragmentation scheme of the parent ion at m/z 265.0747 identified in SOA formed from cyclodecane oxidation. S20 Relative Abundance 100 96.9589 HSO4− 80 267.0914 C10H19O6S− 60 40 20 0 80 120 160 m/z OH 200 240 OH OSO3 O − HSO4− OH 267.0914 C10H19O6S− OH Figure S12. MS2 spectrum and fragmentation scheme of the parent ion at m/z 267.0914 identified in SOA formed from cyclodecane oxidation. S21 Relative Abundance 100 96.9602 HSO4− 281.0698 C10H17O7S− 80 60 40 20 80 120 160 200 240 280 m/z OH OH O OH O − HSO4− O OSO3 281.0698 C10H17O7S− Figure S13. MS2 spectrum and fragmentation scheme of the parent ion at m/z 281.0698 identified in SOA formed from cyclodecane oxidation. S22 OO OOH OH/O2 HO2 OOH OH − H2O − H2O C10H20O2 RO2/HO2 − OH O O O 1,5-H/O2 − HO2 − HO2 OH H+ Gas Phase Particle Phase O OH O C10H18O OSO3 OO HO2 OH/ O2 − H2O OH O OO − H2O OO OH/O2 OS-251 C10H19O5S− − H2O O OO O OOH H+ C10H20O3 OH − H2O RO2/HO2 1,8-H HO2 O OOH OH HOO O O O OH C10H18O3 OSO3 OS-251 C10H19O5S− OOH OH O − OH 1,5-H/ O2/HO2 − OH H+ Gas Phase Particle Phase O O OSO3 C10H18O4 O OH H+ OS-249 C10H17O5S− O Gas Phase H+ Particle Phase HO OH OOH − H2O/OH OH O O OH O OSO3 OH OSO3 OS-265 C10H17O6S− Gas Phase Particle Phase H+ OH O OS-267 C10H19O6S− OH OSO3 OS-281 C10H17O7S− Figure S14. Tentatively proposed formation pathways of OSs formed from the oxidation of cyclodecane in presence of sulfate aerosol. S23 Figure S15. Extracted ion chromatograms (EICs) for alkane-derived OSs identified in aerosol collected from both smog chamber experiments (in red) and field studies (in green). S24
© Copyright 2026 Paperzz