Chapter 11 Derivatives of the Basic Aromatics 1. BENZENE DERIVATIVES There are nine chemicals in the top 50 that are manufactured from benzene. These are listed in Table 11.1. Two of these, ethy!benzene and styrene, have already been discussed in Chapter 9, Sections 5 and 6, since they are also derivatives of ethylene. Three others—cumene, acetone, and bisphenol A—were covered in Chapter 10, Sections 3-5, when propylene derivatives were studied. Although the three carbons of acetone do not formally come from benzene, its primary manufacturing method is from cumene, which is made by reaction of benzene and propylene. These compounds need not be discussed further at this point. That leaves phenol, cyclohexane, adipic acid, and nitrobenzene. Figure 11.1 summarizes the synthesis of important chemicals made from benzene. Caprolactam is the monomer for nylon 6 and is included because of it importance. Table 11.1 Benzene Derivatives in the Top 50 Ethylbenzene Styrene Cumene Phenol Acetone Bisphenol A Cyclohexane Adipic acid Nitrobenzene acetone phenol cumene benzene bisphenol A ethylbenzene styrene adipic acid cyclohexane caprolactam nitrobenzene aniline Figure 11.1 Synthesis of benzene derivatives. 2. PHENOL (CARBOLIC ACID) The major manufacturing process for making phenol was discussed in Chapter 10, Section 4, since it is the co-product with acetone from the acidcatalyzed rearrangement of cumene hydroperoxide. The student should review this process. It accounts for 95% of the total phenol production and has dominated phenol chemistry since the early 1950s. But a few other syntheses deserve some mention. A historically important method, first used about 1900, is sulfonation of benzene followed by desulfonation with caustic. This is classic aromatic chemistry. In 1924 a chlorination route was discovered. Both the sulfonation and chlorination reactions are good examples of electrophilic aromatic substitution on an aromatic ring. Know the mechanism of these reactions. These routes are no longer used commercially. high pressure A minor route, which now accounts for 2% of phenol, takes advantage of the usual surplus of toluene from petroleum refining. Oxidation with a number of reagents gives benzoic acid. Further oxidation to phydroxybenzoic acid and decarboxylation yields phenol. Here phenol competes with benzene manufacture, also made from toluene when the surplus is large. The last 2% of phenol comes from distillation of petroleum and coal gasification. Cu benzoate Table 11.2 Uses of Phenol Bisphenol A 35% Phenolic resins 34 Caprolactam 15 Aniline 5 Xylenols 5 Alkylphenols 5 Miscellaneous 1 Source: Chemical Profiles Table 11.2 outlines the uses of phenol. We will consider the details of phenol uses in later chapters. Phenol-formaldehyde polymers (phenolics) have a primary use as the adhesive in plywood formulations. We have already studied the synthesis of bisphenol A from phenol and acetone. Phenol's use in detergent synthesis to make alky !phenols will be discussed later. Caprolactam and aniline are mentioned in the following sections in this chapter. Although phenol ranked thirty-fourth in 1995, it is still the highest ranked derivative of benzene other than those using ethylene or propylene along with benzene. Its 2000 price was 38C/lb. That gives a total commercial value of $1.6 billion for the 4.2 billion Ib produced. 3. CYCLOHEXANE (HEXAHYDROBENZENE, HEXAMETHYLENE) Benzene can be quantitatively transformed into cyclohexane by hydrogenation over either a nickel or platinum catalyst. This reaction is carried out at 21O 0 C and 350-500 psi, sometimes in several reactors placed in series. The yield is over 99%. Although many catalytic reactions are not well understood, a large amount of work has been done on hydrogenations of double bonds. The metal surface acts as a source of electrons. The TT bonds as well as hydrogen atoms are bound to this surface. Then the hydrogen atoms react with the complexed carbons one at a time to form new C—H bonds. No reaction occurs without the metal surface. The metal in effect avoids what would otherwise have to be a free radical mechanism that would require considerably more energy. The mechanism is outlined as follows. Table 11.3 shows the main uses of cyclohexane. Adipic acid is used to manufacture nylon 6,6, the major nylon used currently in the U.S. Caprolactam is the monomer for nylon 6, for which there is a growing market. 4. ADIPIC ACID (1,6-HEXANDIOIC ACID) Nearly all the adipic acid manufactured, 98%, is made from cyclohexane by oxidation. Air oxidation of cyclohexane with a cobalt or manganese (II) naphthenate or acetate catalyst at 125-16O0C and 50-250 psi pressures gives a mixture of cyclohexanone and cyclohexanol. Benzoyl peroxide is another Table 11.3 Uses of Cyclohexane Adipic acid 55% Caprolactam 26 Miscellaneous 19 Source: Chemical Profiles possible catalyst. The yield is 75-80% because of some ring opening and other further oxidation that takes place. The cyclohexanone/cyclohexanol mixture (sometimes referred to as ketone-alcohol, KA mixture, or "mixed oil") is further oxidized with 50% nitric acid with ammonium vanadate and copper present as catalysts at 50-9O0C and 15-60 psi for 10-30 min. 1:3 mixed oil The mechanism of cyclohexane oxidation involves cyclohexane hydroperoxide as a key intermediate. then (2), (3), (2), (3), etc. The cyclohexane hydroperoxide then undergoes a one-electron transfer with cobalt or manganese (II). Chain transfer of the cyclohexyloxyl radical gives cyclohexanol or p-scission gives cyclohexanone. to step (6) or (7) to step (3) to step (2) Figure 11.2 shows a cyclohexane oxidation reactor. The further oxidation of the ketone and alcohol to adipic acid is very complex but occurs in good yield, 94%, despite some succinic and glutaric acid by-products being formed because the adipic acid can be preferentially crystallized and centrifuged. A small amount of adipic acid, 2%, is made by hydrogenation of phenol with a palladium or nickel catalyst (15O0C, 50 psi) to the mixed oil, then nitric acid oxidation to adipic acid. If palladium is used, more cyclohexanone is formed. Although the phenol route for making adipic acid is not economically advantageous because phenol is more expensive than benzene, the phenol conversion to greater cyclohexanone percentages can be used successfully for caprolactam manufacture (see next section), where cyclohexanone is necessary. caprolactam Figure 11.2 The large tower on the right is the cyclohexane oxidation chamber and purification unit to convert cyclohexane to the hydroperoxide and then to cyclohexanone/cyclohexanol. An elevator leads to the top platform of this narrow tower, where an impressive view of this and other surrounding plants can be obtained. (Courtesy of Du Pont) Table 11.4 gives the uses of adipic acid. As will be seen later, nylon 6,6 has large markets in textiles, carpets, and tire cords. It is made by reaction of HMDA and adipic acid. Table 11.4 Uses of Adipic Acid Nylon 6,6 fibers 72% Nylon 6,6 resins 18 Polyurethanes 5 Plasticizer 3 Miscellaneous 2 Source: Chemical Profiles adipic acid HMDA nylon 6,6 5. CAPROLACTAM The common name caprolactam comes from the original name for the Ce carboxylic acid, caproic acid. Caprolactam is the cyclic amide (lactam) of 6aminocaproic acid. Its manufacture is from cyclohexanone, made usually from cyclohexane (58%), but also available from phenol (42%). Some of the cyclohexanol in cyclohexanone/cyclohexanol mixtures can be converted to cyclohexanone by a ZnO catalyst at 40O0C. Then the cyclohexanone is converted into the oxime with hydroxylamine. The oxime undergoes a very famous acid-catalyzed reaction called the Beckmann rearrangement to give caprolactam. Sulfuric acid at 100-12O0C is common but phosphoric acid is also used, since after treatment with ammonia the by-product becomes ammonium phosphate, which can be sold as a fertilizer. The caprolactam can be extracted and vacuum distilled, bp 1390C at 12 mm. The overall yield is 90%. cyclohexane or phenol The first reaction, formation of the oxime, is a good example of a nucleophilic addition to a ketone followed by subsequent dehydration. Oximes are common derivatives of aldehydes and ketones because they are solids that are easily purified. In the rearrangement of cumene hydroperoxide we saw an industrial example of a rearrangement of electron-deficient oxygen. The Beckmann rearrangement of caprolactam is a successful large-scale example of a rearrangement to electron-deficient nitrogen. Protonation of the hydroxyl followed by loss of a water molecule forms the positive nitrogen, but the R group can migrate while the water leaves, so the nitrenium ion may not be a discreet intermediate. Attack of water on the rearranged ion and a proton shift to form the amide completes the process. The student should adapt this general mechanism and work through the specific cyclic example of cyclohexanone oxime to caprolactam. Note that the result of the shift is an expansion of the ring size in the final amide product with the incorporation of the nitrogen atom as part of the ring. All of the caprolactam goes into nylon 6 manufacture, especially fibers (80%) and plastic resin and film (20%). Although nylon 6,6 is still the more important nylon in this country (about 2:1) and in the U.K., nylon 6 is growing rapidly, especially in certain markets such as nylon carpets. In other countries, for example, Japan, nylon 6 is more predominant. Nylon 6 is made directly from caprolactam by heating with a catalytic amount of water. 6. NITROBENZENE Aniline is an important derivative of benzene that can be made in two steps by nitration to nitrobenzene and either catalytic hydrogenation or acidic metal reduction to aniline. Both steps occur in excellent yield. Almost all nitrobenzene manufactured (97%) is directly converted into aniline. The nitration of benzene with mixed acids is an example of an electrophilic aromatic substitution involving the nitronium ion as the attacking species. The hydrogenation of nitrobenzene has replaced the ironReaction: catalyst aniline Mechanism: acid reduction process. At one time the special crystalline structure of the Fe3O4 formed as a by-product in the latter process made it unique for use in pigments. But the demand for this pigment was not great enough to justify continued use of this older method of manufacturing aniline. The uses of aniline obtained from nitrobenzene are given in Table 11.5. Aniline's use in the rubber industry is in the manufacture of various vulcanization accelerators and age resistors. By far the most important and growing use for aniline is in the manufacture of/7,^-methylene diphenyl diisocyanate (MDI), which is polymerized with a diol to give a polyurethane. MDA MDI Table 11.5 Uses of Aniline MDI 80% Rubber-processing chemicals 11 Herbicides 3 Dyes and pigments 3 Specialty fibers 2 Miscellaneous 1 Source: Chemical Profiles Two moles of aniline react with formaldehyde to give p,pmethylenedianiline (MDA). MDA reacts with phosgene to give MDI. The student should develop the mechanism of this electrophilic aromatic substitution. We have already been introduced to polyurethane chemistry in Chapter 10, Section 2, where we used toluene diisocyanate (TDI) reacting with a diol to give a polyurethane. Polyurethanes derived from MDI are more rigid than those from TDI. New applications for these rigid foams are in home insulation and exterior autobody parts. The intermediate MDA is now on the "Reasonably Anticipated to Be Human Carcinogens" list and the effect of this action on the market for MDI remains to be seen. The TLV-TWA values for MDA and MDI are some of the lowest of the chemicals we have discussed, being 0.1 and 0.005 ppm respectively. 7. TOLUENE DERIVATIVES Other than benzene, 30% of which is made from toluene by the hydrodealkylation process, there are no other top 50 chemicals derived from catalyst para only zeolites para only Figure 11.3 Conversion of toluene to other aromatic compounds. toluene in large amounts. However, a few important chemicals are made from toluene. As we learned earlier in this chapter, Section 2, a very small amount of phenol is made from toluene. Toluene also provides an alternate source that is becoming more popular for the xylenes, especially /?-xylene. These routes are indicated in Fig. 11.3. The first example, the disproportionation of toluene to benzene and the xylenes, is being used in the U.S. to the extent of 3-4 billion Ib of benzene and xylenes. The last two examples provide routes respectively to terephthalic acid and /?-xylene without the need for an isomer separation, a very appealing use for toluene that is often in excess supply as compared to the xylenes. Two other derivatives of toluene are the important explosive trinitrotoluene (TNT) and the polyurethane monomer toluene diisocyanate (TDI). TNT requires complete nitration of toluene. TDI is derived from a mixture of dinitrotoluenes (usually 80% o,p and 20% 0,0) by reduction to the diamine and reaction with phosgene to the diisocyanate. TDI is made into flexible foam polyurethanes for cushioning in furniture (35%), transportation (25%), carpet underlay (20%), and bedding (10%). A small amount is used in polyurethane coatings, rigid foams, and elastomers. TNT TDI Finally, benzaldehyde, an ingredient in flavors and perfumes, is made by dichlorination of toluene (free radically via the easily formed benzyl radical) followed by hydrolysis. benzaldehyde 8. TEREPHTHALIC ACID AND DIMETHYL TEREPHTHALATE TA, TPA5 or PTA DMT There are only two top 50 chemicals, terephthalic acid and dimethyl terephthalate, derived from /?-xylene and none from o- or w-xylene. But phthalic anhydride is made in large amounts from o-xylene. Terephthalic acid is commonly abbreviated TA or TPA. The abbreviation PTA (P = pure) is reserved for the product of 99% purity for polyester manufacture. For many years polyesters had to be made from dimethyl terephthalate (DMT) because the acid could not be made pure enough economically. Now either can be used. TA is made by air oxidation of/7-xylene in acetic acid as a solvent in the presence of cobalt, manganese, and bromide ions as catalysts at 20O0C and 400 psi. TA of 99.6% purity is formed in 90% yield. This is called the Amoco process. A partial mechanism with some intermediates is given on the next page. Details are similar to the cyclohexane to cyclohexanonexyclohexanol process discussed in this chapter, Section 4. The crude TA is cooled and crystallized. The acetic acid and xylene are evaporated and the TA is washed with hot water to remove traces of the catalyst and acetic acid. Some /7-formylbenzoic acid is present as an impurity from incomplete oxidation. This is most easily removed by hydrogenation to /7-methylbenzoic acid and recrystallization of the TA to give 99.9% PTA, which is a polyester-grade product, mp > 30O0C. p-formylbenzoic acid /?-methylbenzoic acid DMT can be made from crude TA or from /?-xylene directly. Esterification of TA with methanol occurs under sulfuric acid catalysis. Direct oxidation of /?-xylene with methanol present utilizes copper and manganese salt catalysis. Table 11.6 Uses of TA/DMT Polyester fiber Polyester resin Polyester film Miscellaneous Source: Chemical Profiles 50% 33 8 9 DMT must be carefully purified via a five-column distillation system, bp 2880C, mp 1410C. The present distribution of the TA/DMT market in the U.S. is 44:56. All new plants will probably make terephthalic acid. Table 11.6 shows the uses of TA/DMT. TA or DMT is usually reacted with ethylene glycol to give poly(ethylene terephthalate) (90%) but sometimes it is combined with 1,4-butanediol to yield poly(butylene terephthalate). Polyester fibers are used in the textile industry. Films find applications as magnetic tapes, electrical insulation, photographic film, and packaging. Polyester bottles, especially in the soft drink market, are growing rapidly in demand. 9. PHTHALIC ANHYDRIDE The manufacturing method of making phthalic anhydride has been changing rapidly similar to the switchover in making maleic anhydride. In 1983 28% of phthalic anhydride came from naphthalene, 72% from o- xylene. No naphthalene-based plants were open in 1989. In 1993 naphthalene rebounded and was used to make 20% of the phthalic anhydride again because of a price increase for o-xylene, but as of 1998 no phthalic anhydride is made from naphthalene. Despite the better yield in the naphthalene process, energetic factors make this less favorable economically compared to the oxylene route. The uses of phthalic anhydride include plasticizers (53%), unsaturated polyester resins (22%), and alkyd resins (15%). Phthalic anhydride reacts with alcohols such as 2-ethylhexanol to form liquids that impart great flexibility when added to many plastics without hurting their strength. Most of these plasticizers, about 80%, are for poly(vinyl chloride) flexibility. Dioctyl phthalate (DOP), also called di-(2ethylhexyl)phthalate (DEHP), is a common plasticizer. 2-ethylhexanol DOP or DEHP High doses of DEHP have been found to cause liver cancer in rats and mice and it is on the "Reasonably Anticipated to Be Human Carcinogens" list. In 2000 a report by the National Toxicology Program found serious concern that DEHP in vinyl medical devices may harm the reproductive organs of critically ill and premature male infants exposed during medical treatment. They also expressed concern that development of male unborn babies would be harmed by the pregnant mothers' exposure to DEHP or that the child would be harmed by other DEHP exposure during the first few years of life. Certain plasticizer applications, such as those in infants' pacifiers and squeeze toys, as well as blood bags, respiratory masks, oxygen tubing, and intravenous bags softened with DEHP, may be affected in the years ahead. Other diesters of phthalic anhydride do not seem to have the toxic effects of DEHP so substitutes should be easy to find. Suggested Readings Chemical Profiles in Chemical Marketing Reporter, 3-2-98, 4-13-98, 6-8-98, 6-15-98, 7-6-98, 2-8-99, 2-15-99, and 3-29-99. Kent, RiegeVs Handbook of Industrial Chemistry, pp. 849-862. Szmant, Organic Building Blocks of the Chemical Industry, pp. 407-574. Wiseman, Petrochemicals, pp. 101-140. Wittcoff and Reuben, Industrial Organic Chemicals, pp. 234-293.
© Copyright 2026 Paperzz