HIGH - ENERGY MODELS
IN TRANSPORT CODES
A CASE STUDY
CEA/DEN/DANS/DM2S/SERMA/LTSD | Davide Mancusi
www.cea.fr
EXTEND-2016
30 TH AUGUST 2016
ISOLDE
I
I
EXPERIMENT
1.4-GeV proton beam
thick Pb-Bi target
goal : measuring radionuclide yields
SET- UP GEOMETRY
ASTATINE PRODUCTION
goal of our simulation : estimate the astatine
production rate
I
At is volatile and decays to Po
I
radioprotection issue
TRANSPORT CODES AND
I
INCL4.6 (Fortran77)
I
I
I
I
I
INCL
MCNPX v2.7β
PHITS ≥ v2.43
MCNP6 (future)
MARS (future)
INCL++ (C++)
I
Geant4 ≥ v9.5
MODEL
RESULT OF TRANSPORT CALCULATION
I
the MCNPX calculation produces a ROOT file
I
contains a 5M-reaction TTree describing the run
I
we operate on the tree
I
let’s take a closer look at it. . .
THE
ROOT
TREE
I
a ROOT tree is simply a table of variable values
I
one row = one INCL reaction
can be inspected using
I
I
I
I
h101->Draw("<expression>","<selection>")
h101->Scan("<expression>","<selection>")
h101->StartViewer()
***********************************************************************************************
*
Row
* Instance * ntypreac *
ereac *
nacib *
nzcib *
napart *
nzpart *
***********************************************************************************************
*
20 *
0 *
0 * 1201.5240 *
209 *
83 *
1 *
1 *
*
20 *
1 *
0 * 1201.5240 *
209 *
83 *
1 *
0 *
*
20 *
2 *
0 * 1201.5240 *
209 *
83 *
1 *
1 *
*
20 *
3 *
0 * 1201.5240 *
209 *
83 *
-1 *
-1 *
*
20 *
4 *
0 * 1201.5240 *
209 *
83 *
1 *
0 *
*
20 *
5 *
0 * 1201.5240 *
209 *
83 *
1 *
0 *
*
20 *
6 *
0 * 1201.5240 *
209 *
83 *
0 *
0 *
*
20 *
7 *
0 * 1201.5240 *
209 *
83 *
0 *
0 *
*
20 *
8 *
0 * 1201.5240 *
209 *
83 *
0 *
0 *
*
20 *
9 *
0 * 1201.5240 *
209 *
83 *
0 *
0 *
*
20 *
10 *
0 * 1201.5240 *
209 *
83 *
0 *
0 *
*
20 *
11 *
0 * 1201.5240 *
209 *
83 *
205 *
83 *
*
21 *
0 *
4 * 176.68479 *
209 *
83 *
1 *
0 *
*
21 *
1 *
4 * 176.68479 *
209 *
83 *
-1 *
-1 *
*
21 *
2 *
4 * 176.68479 *
209 *
83 *
1 *
0 *
*
21 *
3 *
4 * 176.68479 *
209 *
83 *
1 *
0 *
*
21 *
4 *
4 * 176.68479 *
209 *
83 *
1 *
0 *
*
21 *
5 *
4 * 176.68479 *
209 *
83 *
1 *
0 *
*
21 *
6 *
4 * 176.68479 *
209 *
83 *
0 *
0 *
*
21 *
7 *
4 * 176.68479 *
209 *
83 *
0 *
0 *
*
21 *
8 *
4 * 176.68479 *
209 *
83 *
0 *
0 *
*
21 *
9 *
4 * 176.68479 *
209 *
83 *
0 *
0 *
*
21 *
10 *
4 * 176.68479 *
209 *
83 *
204 *
83 *
*
22 *
0 *
0 * 1258.5741 *
207 *
82 *
2 *
1 *
*
22 *
1 *
0 * 1258.5741 *
207 *
82 *
2 *
1 *
*
22 *
2 *
0 * 1258.5741 *
207 *
82 *
1 *
0 *
*
22 *
3 *
0 * 1258.5741 *
207 *
82 *
1 *
1 *
*
22 *
4 *
0 * 1258.5741 *
207 *
82 *
1 *
0 *
*
22 *
5 *
0 * 1258.5741 *
207 *
82 *
1 *
0 *
*
22 *
6 *
0 * 1258.5741 *
207 *
82 *
1 *
0 *
***********************************************************************************************
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
*Br
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
:nevt
:ncolevt
:ntypreac
:ereac
:nsec
:treac
:xreac
:yreac
:zreac
:bimpact
:nacib
:nzcib
:ncel
:narem
:nzrem
:exrem
:enrem
:jrem
:npartcasc
:mulncasc
:mulnevap
:mulntot
:napref
:nzpref
:expref
:ntrack
:nhist
:napart
:nzpart
:enpart
:ppart
:thetapart
:phipart
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
nevt/I
ncolevt/I
ntypreac/I
ereac/F
nsec/I
treac/F
xreac/F
yreac/F
zreac/F
bimpact/F
nacib/I
nzcib/I
ncel/I
narem/I
nzrem/I
exrem/F
enrem/F
jrem/I
npartcasc/I
mulncasc/I
mulnevap/I
mulntot/I
napref/I
nzpref/I
expref/F
ntrack/I
nhist[ntrack]/I
napart[ntrack]/I
nzpart[ntrack]/I
enpart[ntrack]/F
ppart[ntrack]/F
thetapart[ntrack]/F
phipart[ntrack]/F
type of projectile
projectile energy
reaction x coordinate
reaction y coordinate
reaction z coordinate
target mass number
target charge number
number of ejectiles
ejectile mass number (array)
ejectile charge number (array)
ASTATINE PRODUCTION MECHANISM
how can we produce At from Pb-Bi ?
ASTATINE PRODUCTION MECHANISM
how can we produce At from Pb-Bi ?
ASTATINE PRODUCTION MECHANISM
how can we produce At from Pb-Bi ?
ASTATINE PRODUCTION MECHANISM
how can we produce At from Pb-Bi ?
LOCATION OF PRIMARY REACTIONS
I
I
I
π ± production requires E & 500 MeV
where do reactions take place ? plots
what is the reaction energy ? plots
AT
I
I
ISOTOPIC DISTRIBUTION
we can expect to find At in the target
let’s plot its isotopic distribution plots
PROTON CONTRIBUTION
I
I
let’s check the proton contribution plots
ntypreac identifies the projectile type
value
0
1
2
3
4
5
6
7
8
9
10
meaning
proton
neutron
π+
π0
π−
µ+
µ−
deuteron
triton
3 He
4 He
OTHER MECHANISMS FOR ASTATINE PRODUCTION ?
how can we produce At from Pb-Bi ?
OTHER MECHANISMS FOR ASTATINE PRODUCTION ?
how can we produce At from Pb-Bi ?
OTHER MECHANISMS FOR ASTATINE PRODUCTION ?
how can we produce At from Pb-Bi ?
TWO - STEP MECHANISM
direct mechanism :
209
I
Bi(p,π −xn)At
two-step mechanism :
1. Pb,Bi(p,3,4 He)
2. 209 Bi(3,4 He,xn)At
what is the optimal 3,4 He energy for astatine production ?
plots
AT
I
I
ISOTOPIC DISTRIBUTION REVISITED
more surprises ?
let’s plot the helium contribution to the
astatine isotopic distribution plots
TRIVIA
at least three other mechanisms can lead to At
production !
can you guess what they are ?
1. ? ? ?
2. ? ? ?
3. ? ? ?
TRIVIA
at least three other mechanisms can lead to At
production !
can you guess what they are ?
1. 209 Bi(π + ,xn)At
2. ? ? ?
3. ? ? ?
TRIVIA
at least three other mechanisms can lead to At
production !
can you guess what they are ?
1. 209 Bi(π + ,xn)At
2. 209 Bi(Li,p xn)At
3. ? ? ?
TRIVIA
at least three other mechanisms can lead to At
production !
can you guess what they are ?
1.
2.
3.
209
Bi(π + ,xn)At
209
Bi(Li,p xn)At
209
Bi(Be,2p xn)At
. . . there are actually dozens of other channels,
but their contributions are negligible
COMPARISON WITH EXPERIMENTAL DATA
I
I
irradiation history
must be taken into
account (CINDER
code)
INCL4.6 : improved
low-energy reactions
J.-C. David et al.
EPJ A49 (2013) 29
IMPORTANT INGREDIENTS FOR
AT
you essentially need good models for :
1.
209
Bi(p,π − xn)At (∼1 GeV)
I
for the light At isotopes
YIELDS
IMPORTANT INGREDIENTS FOR
AT
YIELDS
you essentially need good models for :
1.
209
Bi(p,π − xn)At (∼1 GeV)
I
for the light At isotopes
2. high-energy (∼1 GeV) composite-particle emission
3. low-energy (∼40 MeV) composite-particle-induced
reactions
I
for the heavy At isotopes
IMPORTANT INGREDIENTS FOR
AT
YIELDS
you essentially need good models for :
1.
209
Bi(p,π − xn)At (∼1 GeV)
I
for the light At isotopes
2. high-energy (∼1 GeV) composite-particle emission
3. low-energy (∼40 MeV) composite-particle-induced
reactions
I
for the heavy At isotopes
INCL is probably the only INC model on
the market capable of all of the above
CONCLUSIONS
high-energy models in transport codes
I
I
have a wide range of applicability
can teach you a lot
REACTION SITES
back
REACTION ENERGY
back
ASTATINE ISOTOPIC DISTRIBUTION
back
ASTATINE ISOTOPIC DISTRIBUTION
back
REACTION ENERGY FOR 209 B I (H E , X )AT
back
REACTION ENERGY FOR 209 B I (H E , X )AT
back
ASTATINE ISOTOPIC DISTRIBUTION
back
© Copyright 2026 Paperzz