Calculus So, you think you can take the derivative? (Q1.) Which of the following is y (5) , the 5th derivative of y = e 2 x ? (G) 32e 2 x (L) 10e 2 x (U) 5e 2 x (C) 2e 2 x (K) e 32 x d !# 1 $& (Q2.) &= ? # d ! #" csc ! &% !sin! (A) cos2 ! !1 (B) csc ! cot ! !1 (C) cos ! sin! (D) cos ! (E) ! cos ! d " 4 x 2 + 5x ! 6 % (Q3.) '& = ? dx $# x +2 (A) 1 (B) 4 x +1 (x + 2)2 8x ! 3 (D) (x + 2)2 (C) !x 2 ! 5x + 6 (E) (x + 2)2 (Q4.) If y = e x (x ! 1)2 (x + 2)4 , then y ! = ? ( (A) e x (x ! 1)(x + 2)3 x 2 + 7 x ! 2 (B) 6x e (x ! 1)(x + 2) x ) 3 ( (C) (x + 1)(x + 2)3 x 2 ! 5x + 2 ) 2 4 % " (D) e x (x + 1)2 (x + 2)4 $ e x + + # x ! 1 x + 2 '& 2 4 % " (E) (x + 1)2 (x + 2)3 $ e x + + # x ! 1 x + 2 '& 1 (Q5.) If f (x ) = 5sin x , then f !(x ) = ? (A) 5sin x ! ln5 ! cos x (B) !5cos x " ln5 " sin x (C) 5sin x ! cos x (D) 5sin x + cos x + ln5 (E) !5sin x " cos x d 3 2 x =? (Q6.) dx (A) 3 2 x ( ) (B) 2 33 x (C) (D) 3 (E) 23 x 3 2x 1 3 2x (Q7.) If y = sec3 (ln x ) , then which of the following could be (A) (B) (C) (D) dy ? dx 3 sec3 (ln x ) tan(ln x ) x 2 1 3 sec ( x ) tan( x1 ) ln x 2 3 sec (ln x ) x 3 sec3 ( x1 ) tan( x1 ) (E) 3 ln x sec2 ( x1 ) tan( x1 ) (Q8.) If y = tan!1 x ! 1 , then which of the following could be (A) 2 x x!1 tan!1 x ! 1 (B) 2(1 + x 2 ) 1 (C) 2 2(1 + x ) x ! 1 (D) (E) x!1 2(1 + x 2 ) 1 2x x ! 1 2 dy ? dx (Q9.) If f (x ) = x 8 ! x 2 , then f !(x ) = ? 8 ! 2x 2 (A) 8 ! x2 8 (B) 8 ! x2 1 ! 2x 2 (C) 2 8 ! x2 !x 2 (D) 8 ! x2 8 + x ! x2 (E) 2 8 ! x2 (Q10.) If 2 cos x sin y = 14 , then which of the following could be dy ? dx (A) 7 tan x ! 7 tan y (B) !7 sin x + 7 cos y (C) tan x tan y (D) ! sin x cos y !2 sin x + 2 cos y (E) 14 cos x + 14 sin y (Q11.) Find the velocity function of a moving particle that has position s(t ) = t 3 cos t (A) v (t ) = t 3 ! sint (B) v (t ) = 3t 2 ! sint (C) v (t ) = t 3 sint ! 3t cos t (D) v (t ) = !t 3 sint + 3t 2 cos t (E) v (t ) = !3t 2 sint 10 dP (Q12.) If P = , then could be? !t dt 1 + 2e 20e t (A) (2 + e t )2 10e t (B) (2 ! e t )2 !20e t (C) (1 + e t )2 (D) 20 + e t (1 + 2e t )2 et (E) 10 + 2e t 3 (Q13.) Which of the following is the 2nd derivative for y = sin!1 x !2x (A) (1 ! x 2 )3 x (B) (1 ! x 2 )3 x (C) 2 1! x2 1 (D) (1 ! x 2 )3 (E) sin!1 x 1! x2 (Q14.) Which of the following is the 2nd derivative for y = ln(sec x + tan x ) (A) tan x + sec x csc x (B) ln(sec x ) + ln(tan x ) sin x + cos x (C) sec x + tan x (D) sin x cos x (E) sec x tan x (Q15.) d sin4 ! ! cos 4 !) = ? ( d! (A) 0 (B) 8 sin3 ! cos 3 ! (C) 4 sin3 (cos !) + 4 cos 3 (sin !) (D) 4 sin3 ! cos ! ! 4 cos 3 ! sin ! (E) 4 sin! cos ! (Q16.) If f (x ) = x 2 ln(x )! (A) 2x ln(x ) ! x 2ln x (B) x (C) 2x ln x ln(x ) (D) 2x (E) x 2 ln(x ) ! 21 x2 , then f !(x ) = ? 2 4 x2 (Q17.) If f (x ) = , then f !(x ) = ? (1+ 5x )2 (A) (B) (C) (D) 2 x + 8x 2 (1 + 5x )4 x 1 + 5x x 2(1 + 5x )3 2x (1 + 5x )3 10x 2 (E) (1 + 5x )3 (Q18.) If g(x ) = tan(x )! x , then g !(x ) = ? (A) 1 + sec x (B) sec2 x ! x (C) csc2 x (D) tan2 x (E) 2 tan x sec2 x (Q19.) [Lovely Heart Curve] If (x 2 + y 2 ! 1)3 ! x 2 y 3 = 0 , then (A) 3(2x + 2 y )2 ! 6xy 2 3(2x + 2 y )2 ! 6xy 2 (B) 2 (x + y 2 ! 1)3 ! x 2 y 3 (C) 2xy 3 ! 6x (x 2 + y 2 ! 1)2 6 y (x 2 + y 2 ! 1)2 ! 3x 2 y 2 3xy 3 ! 6x (x 2 + y 2 ! 1)2 (D) 2 y (x 2 + y 2 ! 1)2 ! 6x 2 y 2 2xy 3 + 6x (x 2 + y 2 ! 1)2 (E) !6 y (x 2 + y 2 ! 1)2 + 3x 2 y 2 5 dy could be? dx d (ln(ln(ln x ))) = ? dx 1 (A) x !ln x !ln(ln x )!ln(ln(ln x )) x (B) ln x !ln(ln x ) ln x (C) x !ln(ln x ) ln(ln(ln x )) (D) x !ln x !ln(ln x ) 1 (E) x !ln x !ln(ln x ) (Q20.) r3 (Q21.) If s = (A) (Q22.) r2 + a r 4 ! 3ar 2 , where a is a constant, then (r 2 + a)3 ( (B) 2r 4 + 3a (C) (r 2 + a)3 ds =? dr 2r 4 + 3ar 2 (r 2 + a)3 (D) r 4 + 3ar (E) (r 2 + a)3 2r 4 ! 3ar 2 (r 2 + a)3 ) 1 d 26e x = ? dx 1 (A) !26e !x 26e x (B) x2 !13 (C) x e ! ex $ dy (Q23.) If y = tan # , find & dx " x + 1% ! ex $ ! e x $ ! xe x $ (A) sec # tan # ' " x + 1&% " x + 1&% #" (x + 1)2 &% ! e x $ ! xe x $ (B) sec2 # ' " x + 1&% #" (x + 1)2 &% ! xe x $ (C) sec # " (x + 1)2 &% 2 ! e x $ ! (e x $ (D) sec # ' " x + 1&% #" (x + 1)2 &% 2 " !e x % (E) sec $ # (x + 1)2 '& 2 6 (D) 13xe !1 x2 1 !26e x (E) x2
© Copyright 2026 Paperzz