The period of any sine or cosine function is

Section 4.1
Change in Period: Graphing 𝑦 = sin 𝒃π‘₯ or 𝑦 = cos 𝒃π‘₯
Graph π’š = 𝐬𝐒𝐧 πŸπ’™ over a two-period interval.
Amplitude:
π‘₯
(angle in radians)
Period:
y
0
πœ‹
4
πœ‹
2
3πœ‹
4
πœ‹
5πœ‹
4
3πœ‹
2
7πœ‹
4
2πœ‹
The coefficient β€œb” represents the number of times sine will complete a cycle between 0 to 2πœ‹.
If we change the coefficient of x that will change the period of the function.
The input angle now is β€œbx” will still cycle through all angle values from 0 to 2πœ‹ or 0 ≀ 𝑏π‘₯ ≀ 2πœ‹.
So in order for the function to complete a cycle, the value of x must be 0 ≀ π‘₯ ≀
The period of any sine or cosine function is
πŸπ…
𝒃
2πœ‹
𝑏
.
Changes made to the inside of the function affect the graph horizontally. In other words, it changes the
x-values used for the graph.
To find the x-values that will be used for 1 period,
Set up the inequality 𝟎 ≀ π’Šπ’π’”π’Šπ’…π’† 𝒐𝒇 π’‡π’–π’π’„π’•π’Šπ’π’ ≀ πŸπ… then solve for x. This gives you the start and end points
for one period.
Next, find the midpoints =
π‘ π‘‘π‘Žπ‘Ÿπ‘‘+𝑒𝑛𝑑
2
.
Basic steps to graph one period of Sine and Cosine.
1) Find the x-values. Set up the inequality 𝟎 ≀ π’Šπ’π’”π’Šπ’…π’† 𝒐𝒇 π’‡π’–π’π’„π’•π’Šπ’π’ ≀ πŸπ… then solve for x.
This gives you the start and end points for one period. Find the midpoints =
π‘ π‘‘π‘Žπ‘Ÿπ‘‘+𝑒𝑛𝑑
2
.
2) Draw a dotted horizontal line for the middle of the graph. (Vertical shift will determine the middle)
3) Draw in the basic shape for sine or cosine using the amplitude to determine the vertical distance from the
middle of the graph.
𝟏
Example 1: Graph π’š = 𝐜𝐨𝐬 𝟐 𝒙 over a one-period interval.
Amplitude:
Period:
Example 2: Graph π’š = 𝐜𝐨𝐬 πŸ’π’™ over a one-period interval.
Amplitude:
Period:
𝟏
Example 3: Graph π’š = 𝐬𝐒𝐧 πŸ‘ 𝒙 over a one-period interval.
Amplitude:
Period: