Problem Set - 2 AUTUMN 2016 MATHEMATICS-I (MA10001) 1. Determine the following limits: ex − e−x − x ;x→0 (a) x2 sin x 2 July 25, 2016 (b) (2x tan x − π sec x); x → π/2 2 (c) cos(ax)b/x ; x → 0 (d) (sin x)tan x ; x → π/2 (e) (1 − x2 )1/ ln(1−x) ; x → 1 (f) asin x − a ; x → π/2 ln sin x (g) (sec x)cot x ; x → π/2 (h) 1 − 4 sin2 (πx/6) ;x→1 1 − x2 (1 + x)1/x − e (i) ;x→0 x (j) tan x 1 (k) ;x→0 x (l) logsec( x2 ) cos x logsec x cos x2 ;x→0 x2 sin(1/x) ;x→0 tan x 2. Using L’Hospital rule evaluate 2 (a) lim (ln cot x) tan x x→0 sinx (d) lim √ x→0 1 − cosx 1 (c) lim x ln(ex )−1 x→0 x 1 − ] x→1 x − 1 ln x tan x 1 (g) lim x→0 x (e) lim [ (i) π lim (cos x) 2 −x x→π/2 e1/x − 1 (b) lim x→∞ 2 arctan x2 − π 1 (f) lim (cot x) ln x x→0 a x (h) lim 1 + x→∞ x (j) lim (tan x→1 πx tan πx ) 2 4 3. Expand in power of x − 2 of the polynomial x4 − 5x3 + 5x2 + x + 2. 4. Expand in power of x + 1 of the polynomial x5 + 2x4 − x2 + x + 1. √ 5. Write Taylor’s formula for the function y = x when a = 1, n = 3. MA10001 DEPARTMENT OF MATHEMATICS PROBLEM SET - 2 √ 6. Write the Maclaurin formula for the function y = 1 + x when n = 2. Further, estimate √ the error of the approximate equation 1 + x ≈ 1 + 12 x − 81 x2 when x = 0.2. 7. Write down the Taylor’s expansion for the function f (x) = sinx about the point a = n = 4. π 4 with 8. If f 00 (x) exists on [a, b] and f 0 (a) = f 0 (b) prove that 1 a+b = [f (a) + f (b)] + (b − a)2 f 00 (c) for some c ∈ (a, b). f 2 2 2 9. Applying Taylor’s theorem with remainder prove that 1 + x2 − x8 < √ 1 + x < 1 + x2 if x > 0. 10. Applying Maclaurin’s theorem with the remainder to expand (a) ln(1 + x) (b) (1 + x)m 11. Using Taylor’s formula, evaluate x − sin x (a) lim 2 x→0 ex − 1 − x − x 2 1 (c) lim [x − x2 ln(1 + )] x→0 x 2(tan x − sin x) − x3 x→0 x5 (b) lim (d) lim ( x→0 1 cot x − ) 2 x x Note: Submit solution of problems 1,3,4,7 to your tutorial teacher next week. 2
© Copyright 2026 Paperzz