Math III SSS, SAS, & HL Proofs 1) Name: ________________________ Given: B is the midpoint of AE B is the midpoint of CD Prove: ∆ABD ∆EBC Statement Reason 1. B is the midpoint of AE 1. Given B is the midpoint of CD 2. AB BE , CB BD 3. ABD EBC 4. ∆ABD ∆EBC 2) 2. Definition of Midpoint 3. Vertical Angle Congruence Theorem 4. SAS Congruence Postulate Given: AB CD, BC AD Prove: ∆ABC ∆CDA Statement Reason 1. AB CD, BC AD 1. Given 2. AC AC 3. ∆ABC ∆CDA 2. Reflexive Property of Congruence 3. SSS Congruence Postulate 3) Given: AB CD, AB || CD Prove: ∆ABC ∆DCB Statement Reason 1. AB CD, AB || CD 2. ABC DCB 3. CB CB 4. ∆ABC ∆DCB 1. Given 2. Alternate Interior Angles Theorem 3. Reflexive Property of Congruence 4. SAS Congruence Postulate 4) Given: QS PR, PS RS , QR RS Prove: ∆PRS ∆QSR Statement Reason 1. QS PR, PS RS , QR RS 2. PSR and SRQ are right angles 3. ∆PRS and ∆QSR are right triangles. 4. RS RS 5. ∆PRS ∆QSR 1. Given 2. Definition of Perpendicular Lines 3. Definition of Right Triangles 4. Reflexive Property of Congruence 5. HL Congruence Theorem 5) Given: OM LN , ML MN Prove: ∆OML ∆OMN Statement Reason 1. OM LN , ML MN 2. OML and OMN are right angles 3. OML OMN 4. OM OM 5. ∆OML ∆OMN 1. Given 2. Definition of Perpendicular Lines 3. Right Angle Congruence Theorem 4. Reflexive Property of Congruence 5. SAS Congruence Postulate 6) Given: AB CB D is the midpoint of AC Prove: ∆ABD ∆CBD Statement Reason 1. AB CB 1. Given D is the midpoint of AC 2. AD CD 2. Definition of Midpoint 3. BD BD 4. ∆ABD ∆CBD 3. Reflexive Property of Congruence 4. SSS Congruence Postulate
© Copyright 2026 Paperzz