Optical Properties of Plasmas Based on an Average-Atom Model Walter Johnson, Notre Dame University Claude Guet, CEA/DAM Ile de France George Bertsch, University of Washington Motivation for this work: Joseph Nilsen, LLNL • Average Atom (NR version of “Inferno”) • Linear Response ⇒ Kubo-Greenwood formula for σ(ω) • Kramers-Kronig Dispersion Relation ⇒ Dielectric Function (ω) • Index of refraction n(ω) + iκ(ω) = – ND – p (ω) 11th International Workshop on Radiative Properties of Hot Dense Matter 2 Introduction Free electron model used in plasma diagnostics: nfree(ω) = r ω02 ω02 1− 2 ≈1− 2 <1 ω 2ω where ω02 e2 Nfree = 4π m vol Recent experiments on Al plasmas find n > 1 at few eV temperatures • LLNL comet laser facility1 (14.7 nm Ni-like Pd laser) • Advanced Photon Research Center JAERI2 (13.9 nm Ni-like Ag laser) Reason: Effect of bound electrons on optical properties. 1 2 J. Filevich et al. Proceedings of the 9th International Conference on X-Ray Lasers, May 23-28 (2004) H. Tang et al., Appl. Phys. B78, 975 (2004) – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 3 Average-Atom Model QM version of generalized Thomas-Fermi model3 Inside a neutral (Wigner-Seitz) cell: 2 p Z − + V ua(r) = ua(r) 2m r (1) V = Vdir(r) + Vexc(r) for r ≤ R and V = 0 otherwise. ∇2Vdir = −4πρ (2) Vexc(ρ) is given in the local density approximation 3 R. P. Feynman, N. Metropolis and E. Teller, Phys. Rev. 75 1561 (1949) – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 4 Thermal Average Electron Density Contributions to the density are ρb(r) = ρc(r) = X 1 X 2 2(2l + 1) f ( ) P (r) nl nl 4πr 2 l n Z ∞ 1 X 2 2(2l + 1) d f () P (r) l 4πr 2 l 0 where f () = (3) (4) 1 1 + exp[( − µ)/kT ] The chemical potential µ is chosen to insure electric neutrality: Z= Z 3 ρ(r) d r ≡ r<R Z R 2 4πr ρ(r) dr . (5) 0 Eqs. (1-5) are solved self-consistently for ρ, V , and µ. – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 5 Example Al: density 0.27 gm/cc, T = 5 eV, R = 6.44 a.u., µ = −0.3823 a.u. Bound States State Energy 1s -55.189 2s -3.980 2p -2.610 3s -0.259 3p -0.054 Nbound – ND – n(l) 2.0000 2.0000 6.0000 0.6759 0.8300 11.5059 l 0 1 2 3 4 5 6 7 8 9 10 Nfree Continuum States n(l) n0(l) 0.1090 0.1975 0.2149 0.3513 0.6031 0.3192 0.2892 0.2232 0.1514 0.1313 0.0735 0.0674 0.0326 0.0308 0.0132 0.0127 0.0049 0.0048 0.0017 0.0016 0.0005 0.0005 1.4941 1.3404 ∆n(l) -0.0885 -0.1364 0.2839 0.0660 0.0201 0.0061 0.0018 0.0005 0.0001 0.0001 0.0000 0.1537 11th International Workshop on Radiative Properties of Hot Dense Matter 6 -1 10 ρc(r) ρ0 -2 10 RWS -3 10 0 2 4 8 6 15 2 4πr ρb(r) 10 2 4πr ρc(r) Zeff(r) 5 0 – ND – RWS 0 2 4 r (a.u.) 6 8 11th International Workshop on Radiative Properties of Hot Dense Matter 7 Linear Response and the Kubo-Greenwood Formula Consider an applied electric field: E(t) = F ẑ sin ωt A(t) = F ẑ cos ωt ω The time dependent Schrödinger equation becomes ∂ eF T0 + V (n, r) − vz cos ωt ψi(r, t) = i ψi(r, t) ω ∂t The current density is 2e X Jz (t) = fi hψi(t)|vz |ψi(t)i Ω i – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 8 Kubo-Greenwood • Linearize ψi(r, t) in F • Evaluate the response current: J = Jin sin(ωt) + Jout cos(ωt) • Determine σ(ω): Jin(t) = σ(ω) Ez (t) Result: 2πe2 X σ(ω) = (fi − fj ) |hj|vz |ii|2 δ(j − i − ω), ωΩ ij which is an average-atom version of the Kubo4-Greenwood5 formula. 4 5 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) D. A. Greenwood, Proc. Phys. Soc. London 715, 585 (1958) – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 9 Example: Al T=3eV & density= 0.27gm/cc 0.005 σ (a.u.) 0.004 0.005 bound-bound 0.003 0.003 0.002 0.002 2p-3s 0.001 0 0.01 0.1 2s-3p 1 10 0.030 σ (a.u.) 0.025 – ND – n=2 ε 0.001 0 0.01 0.1 1 10 0.030 free-free 0.025 0.020 0.020 0.015 0.015 0.010 0.010 0.005 0.005 0.000 0.01 bound-free n=3 ε 0.004 3s-3p 0.1 1 Photon Energy (a.u.) 10 0.000 0.01 total 0.1 1 Photon Energy (a.u.) 10 11th International Workshop on Radiative Properties of Hot Dense Matter 10 Optical Properties For a conducting medium, the dielectric function is related to the complex conductivity by σ(ω) (ω) = 1 + 4πi ω We know <σ(ω); we must evaluate =σ(ω) From analytic properties of σ(ω) one infers the dispersion relation6 Z ∞ 2ω0 < σ(ω) = σ(ω0) = − dω. π 0 ω02 − ω 2 6 R. de L. Kronig and H. A. Kramers, Atti Congr. Intern. Fisici, 2, 545 (1927) – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter 11 Conductivity (a.u.) Application of Dispersion Relation 0.030 0.003 0.020 0.002 0.010 0.001 0.000 0.000 -0.010 -0.001 -0.020 -0.030 0.001 – ND – Re[σ(ω)] Im[σ(ω)] T=5eV ρ=0.27 gm/cc -0.002 0.01 0.1 Photon Energy (a.u.) 1 -0.003 1 2 3 Photon Energy (a.u.) 4 11th International Workshop on Radiative Properties of Hot Dense Matter 12 Index of Refraction =σ(ω) <σ(ω) <(ω) = 1 − 4π =(ω) = 4π , ω ω √ n + iκ = . 1 10 n(ω) & κ(ω) 0 10 -1 10 -2 10 T=5eV ρ=0.27gm/cc n(ω) nfree(ω) κ(ω) κfree(ω) -3 10 0.01 – ND – 0.1 1 Photon Energy (a.u.) 11th International Workshop on Radiative Properties of Hot Dense Matter 13 Al: Comparison with Free Electron Model Plasma with ion density nion = 1020/cc 5 0 T=3eV <Z>=1.38 -5 -10 – ND – 2p-3d 2p-4d 2p-3s Pd x-ray Ag x-ray (n-1)/(nfree-1) 10 0 20 40 80 60 Photon Energy (eV) 100 11th International Workshop on Radiative Properties of Hot Dense Matter 14 Al: Penetration Depth Plasma with ion density nion = 1020/cc Penetration Depth (µm) 3 10 2 10 T=3eV <Z>=1.38 1 10 0 10 0 – ND – 20 40 80 60 Photon Energy (a.u.) 100 11th International Workshop on Radiative Properties of Hot Dense Matter 15 Conclusions • Linear response theory applied to average atom model provides a straightforward method for obtaining the frequency-dependent conductivity. • The dielectric function (and index of refraction) can be reconstructed with the aid of a dispersion relation, • The model explains observed behavior of low temperature Al plasmas in the 80-90 eV frequency range. • Even away from bound-bound resonances, the free electron model may be misleading. – ND – 11th International Workshop on Radiative Properties of Hot Dense Matter
© Copyright 2026 Paperzz