Runge’s Example f (x) = 1 1+25x2 on [−1, 1] uniform knot distribution; n=2 Chebyshev interpolation; n=2 1 1 uniform knots 2 f(x) = 1/(1+25 x ) uniform knots f(x) = 1/(1+25 x2) 0.9 0.8 0.8 0.6 0.7 0.6 0.4 0.5 0.2 0.4 0.3 0 0.2 −0.2 0.1 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −0.4 −1 0.5 0.9 0 0.8 −0.5 0.7 −1 0.6 −1.5 0.5 −2 0.4 −2.5 0.3 −3 0.2 −3.5 0.1 −0.6 −0.4 5 2.5 −0.2 0 0.2 0.4 0.6 0.8 1 −0.2 0 0.2 0.4 0.6 0.8 1 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Chebyshev interpolation; n=42 uniform knot distribution; n=42 x 10 −0.4 uniform knots 2 f(x) = 1/(1+25 x ) uniform knots f(x) = 1/(1+25 x2) −0.8 −0.6 1 1 −4 −1 −0.8 Chebyshev interpolation; n=12 uniform knot distribution; n=12 1 uniform knots 2 f(x) = 1/(1+25 x ) uniform knots f(x) = 1/(1+25 x2) 0.9 2 0.8 0.7 1.5 0.6 1 0.5 0.4 0.5 0.3 0.2 0 0.1 −0.5 −1 −0.5 0 0.5 1 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Runge’s Example f (x) = 1 1+25x2 Interpolation in uniformly distributed knots fails: equid., n=2 n=12 0.7 5 0.5 2.5 x 10 n=42 0 0.6 2 −0.5 0.5 −1 0.4 −1.5 0.3 −2 1.5 1 −2.5 0.5 0.2 −3 0 0.1 −3.5 0 −1 0 1 −4 −1 0 1 −0.5 −1 0 1 Interpolation in Chebyshev points works quite well: Chebyshev, n=2 1 n=22 −4 0.01 6 x 10 n=42 0.8 0.005 4 0.6 0 0.4 2 0.2 −0.005 0 0 −0.01 −0.2 −0.4 −1 0 −0.015 1 −1 n kf − πnCheb kC([−1,1] 0 10 1.1−1 1 20 1.5−2 −2 −1 30 2.1−3 0 40 2.9−4 1
© Copyright 2026 Paperzz