15 Titration Curves for Complex Acid/Base Systems (1) Two acids or two bases of different strength. (2) An acid or a base that has two or more acids or bases of different strengths (3) An amphiprotic substance 15A Mixtures of Strong and Weak Acids or Strong and weak Bases Ex. 15-1,2 Calculate the pH of a mixture (25 mL) that is 0.1200 M in HCl and 0.0800 M in HA (Ka = 1.00 × 10-4) during its titration with 0.1000 M KOH at (a) 0.00 mL (b) 5.00 mL and (c) 29.00 mL. (a) 0.00 mL KOH added [H3O+] = cHCl + [A-] = 0.1200 + [A-] ≈ 0.1200 M, pH = 0.92 (assume [A-] << 0.1200M) Check this assumption: Ka [A - ] 1.00 × 10 −4 [A - ] −4 = = = 8.33 × 10 , [HA ] = [HA ] [ H 3 O + ] 0.1200 8.33 × 10 −4 cHA = [HA] + [A-] = 0.0800 M [A - ] + [A - ] ≈ (1.20 × 10 3 )[A - ] = 0.0800 M , [A-] = 6.7× 10-5 M −4 8.33 × 10 (b) After adding 5.00 mL of base c HCl = 25.00 × 0.1200 − 5.00 × 0.100 = 0.0833 M 25.00 + 5.00 [H3O+] = 0.0833 + [A-] ≈ 0.0833 M, pH = 1.08 Check this assumption: [A - ] 1.00 × 10 −4 [A - ] = = 0.001200 M , [HA ] = , cHA = [HA] + [A-] [HA ] 0.0833 0.001200 [A - ] 0.0800 × 25.00 [HA ] = + [A - ] ≈ (8.34 × 10 2 )[A - ] = = 0.0667 M 0.001200 30.00 [A-] = 8.0 × 10-5 M ( << 0.0833 M ) (c) After adding 29.00 mL of base c HCl = 25.00 × 0.1200 − 29.00 × 0.100 = 1.85 × 10 −3 M 25.00 + 29.00 92 c HA = 25.00 × 0.0800 = 3.70 × 10 − 2 M 25.00 + 29.00 [H3O+] = cHCl + [A-] = 1.85×10-3 + [A-], cHA = [HA] + [A-] = 3.70×10-2 M [H 3 O + ][A - ] [HA ] = , 1.00 × 10 −4 [A - ] = [H 3 O + ][A - ] + [A - ] = 3.70 × 10 2 −4 1.00 × 10 3.70 × 10 −6 3.70 × 10 −6 + −3 , [H 3 O ] = 1.85 × 10 + [H 3 O + ] + 1.00 × 10 −4 [H 3 O + ] + 1.00 × 10 − 4 [H3O+]2 + (1.00 × 10-4) [H3O+] = (1.85 × 10-3) [H3O+] + 1.85 × 10-7 + 3.7 × 10-6 [H3O+]2 - (1.75 × 10-3) [H3O+] - 3.885 × 10-6 = 0 [H3O+] = 3.03 × 10-3 M, pH = 2.52 3.03 × 10-3 – 1.85 × 10-3 = 1.18 × 10-3 ([H3O+] from HA) 1.85 × 10-3 ([H3O+] from HCl) Fig 15-1 Curves for the titration of strong acid/weak acid mixtures with 0.1000 M NaOH. Each titration is on 25.00 mL of a solution that is 0.1200 M in HCl and 0.0800 M in HA. 15B Polyfunctional Acids and Bases 15B-1 The phosphoric acid system H3PO4 + H2O ⇔ H2PO4- + H3O+ [H 3O + ][H 2 PO -4 ] K a1 = = 7.11 × 10 − 3 [H 3PO 4 ] H2PO4- + H2O ⇔ HPO42- + H3O+ K a2 = HPO42- + H2O ⇔ PO43- + H3O+ K a3 = [H 3O + ][HPO 24- ] [H 2 PO -4 ] [H 3O + ][PO34- ] [HPO 24 - ] = 6.32 × 10 −8 = 4.5 × 10 −13 Ka1 > Ka2 > Ka3 93 H3PO4 + 3H2O ⇔ PO43- + 3H3O+ [H 3O + ]3[PO 34- ] K a1K a2 K a3 = [H 3PO 4 ] = 7.11 × 10 − 3 × 6.32 × 10 −8 × 4.5 × 10 −13 = 2.0 × 10 − 22 15B-2 The carbon dioxide carbonic acid system K hyd = CO2(aq) + H2O ⇔ H2CO3 + [ H 3 O + ][HCO 3- ] = 1.5 × 10 − 4 K1 = [H 2 CO 3 ] - H2CO3 + H2O ⇔ H3O + HCO3 - + [H 2 CO 3 ] = 2.8 × 10 − 3 [CO 2 (aq)] [ H 3 O + ][CO 32- ] K2 = = 4.69 × 10 −11 [HCO 3 ] 2- HCO3 + H2O ⇔ H3O + CO3 ---------------------------------------------------------------------------------------CO2(aq) + 2H2O ⇔ H3O+ + HCO3[ H 3 O + ][HCO 3- ] K a1 = = 2.8 × 10 −3 × 1.5 × 10 − 4 = 4.2 × 10 −7 [CO 2 (aq)] - + [ H 3 O + ][CO 32- ] K2 = = 4.69 × 10 −11 [HCO 3 ] 2- HCO3 + H2O ⇔ H3O + CO3 Ex. 15-3 Calculate the pH of a solution that is 0.02500 M CO2. cCO 2 = 0.02500 = [CO 2 (aq)] + [H 2 CO 3 ] + [HCO 3- ] + [CO 32- ] [CO 2 (aq)] >> [H 2 CO 3 ] + [HCO 3- ] + [CO 32- ], [CO 2 (aq)] ≈ cCO 2 = 0.02500 M [H3O+] = [HCO3-] + 2[CO32-] + [OH-], From charge-balance 2[CO32-] + [OH-] << [HCO3-] → [H3O+] ≈ [HCO3-] [H 3O + ]2 K a1 = = 4.2 × 10 −7 , [ H 3 O + ] = 0.02500 × 4.2 × 10 -7 = 1.02 × 10 − 4 M [CO 2 (aq)] pH = -log(1.02 × 10-4 ) = 3.99 15C Buffer Solutions Involving Polyprotic Acids Ex. 15-4 Calculate the [H3O+] for a buffer solution that is 2.00 M in H3PO4 and 1.50M in KH2PO4. - + H3PO4 + H2O ⇔ H2PO4 + H3O [H 3O + ][H 2 PO -4 ] K a1 = = 7.11 × 10 − 3 [H 3PO 4 ] 94 H2PO4- + H2O ⇔ HPO42- + H3O+ K a2 = [H 3O + ][HPO 24- ] [H 2 PO -4 ] = 6.32 × 10 −8 Assume: [HPO42-] and [PO43-] << [H2PO4-] and [H3PO4] [H 3 PO 4 ] ≈ cH3PO 4 = 2.00 M, [H 2 PO -4 ] ≈ cH PO- = 1.50 M 2 4 7.11×10 -3 × 2.00 [H 3 O ] = = 9.48 × 10 −3 M 1.50 Check the assumption + [H 3 O + ][HPO 24- ] [H 2 PO -4 ] 9.48 ×10 −3 [HPO 24- ] = = 6.34 ×10 −8 1.50 [HPO42-] = 1.00 × 10-5 M and [PO43-] < [HPO42-] the assumption is valid *For a buffer prepared from NaHA and Na2A HA- + H2O ⇔ H2A + OH- is disregarded [H2A] << [HA-] and [A2-] Ex. 15-5 Calculate the [H3O+] for a buffer solution that is 0.0500 M in potassium hydrogen phthalate (KHP) and0.150M in potassium phthalate (K2P). - HP + H2O ⇔ + H3O + P 2- K a2 = [H 3 O + ][P 2- ] - [HP ] = 3.91×10 −6 Assume: [H2P] is negligible [HP - ] ≈ cKHP = 0.0500 M, [P 2- ] ≈ cK 2P = 0.150 M 3.91×10 -6 × 0.0500 [H 3 O ] = = 1.30 × 10 −6 M 0.150 Check the assumption + (1.30 × 10 -6 )(0.0500) = K a1 = 61.12 × 10 −3 [H 2 P] [H2P] = 6 × 10-5 M and [H2P] << [HP-] and [P2-], the assumption is valid 15D Calculation of the pH of Solution of NaHA HA- + H2O ⇔ A2- + H3O+ HA- + H2O ⇔ H2A + OH- K a2 = K b2 [H 3 O + ][A 2- ] [HA - ] K w [H 2 A][OH - ] = = K a1 [HA - ] For mass balance: cNaHA = [H2A] + [HA-] + [A2-] 95 For charge balance: [Na+] + [H3O+] = [OH-] + [HA-] + 2[A2-] = cNaHA+ [H3O+] [H2A] + [HA-] + [A2-]+ [H3O+] = [OH-] + [HA-] + 2[A2-] [H3O+] = [A2-] + [OH-]- [H2A] [H 3 O + ][HA - ] K a2 [HA - ] 2[H 2 A] = , [A ] = K a1 [H 3 O + ] [H 3 O + ] = K a2 [HA - ] [H 3 O + ][HA - ] Kw + − K a1 [H 3 O + ] [H 3 O + ] ( × [H3O+] ) ⎞ [H 3 O + ]2 [HA - ] + 2 ⎛ [HA ] + 1⎟⎟ = K a2 [HA - ] + K w [H 3 O ] = K a2 [HA ] + K w − → [H 3 O ] ⎜⎜ K a1 ⎝ K a1 ⎠ + 2 - K a2 [HA - ] + K w [H 3 O ] = [HA - ] 1+ K a1 + if CNaHA/Ka1 >> 1 and → + → [H 3 O ] = K a2 C NaHA + K w C 1 + NaHA K a1 Ka2CNaHA >> Kw [H3O + ] ≅ K a1K a 2 Ex. 15-6 Calculate the [H3O+] of a 1.00 × 10-3 M Na2HPO4 solution. Ka2 = 6.32 × 10-8 and Ka3 = 4.5 × 10-13 CNa2HPO4/Ka2 = (1.00 × 10-3)/(6.32 × 10-8) >> 1 and Ka3CNa2HPO4 = 4.5 × 10-13 × 1.00 × 10-3 < Kw K a3C Na 2 HPO 4 + K w 4.5 × 10 −13 × 10 −3 + 10 −14 = 8.1 × 10-10 = [H 3O ] = C Na 2 HPO 4 10 −3 1+ K a2 6.32 × 10 −8 + Ex. 15-7 Find the [H3O+] of a 0.0100 M NaH2PO4 solution. Ka1= 7.11 × 10-3 and Ka2= 6.32 × 10-8 CNaH2PO4/Ka1 = 0.0100/7.11 × 10-3 and Ka2CNaH2PO4 = 6.32 × 10-8 × 0.0100 >> Kw [H3O + ] = K a2C NaH 2 PO 4 + K w 6.32 × 10 −8 × 10 − 2 = 1.62 × 10-5 = C NaH 2 PO 4 10 − 2 1+ 1+ K a1 7.11× 10−3 96 Ex. 15-8 Calculate the [H3O+] of a 0.100 M NaHCO3 solution. CO2 + 2H2O ⇔ H3O+ + HCO3K a1 = - + [ H 3 O + ][HCO 3- ] = 2.8 × 10 −3 × 1.5 × 10 − 4 = 4.2 × 10 −7 [CO 2 (aq)] 2- HCO3 + H2O ⇔ H3O + CO3 K2 = [ H 3 O + ][CO 32- ] = 4.69 × 10 −11 [HCO 3 ] ∵ CNaHA/Ka1 >> 1 and Ka2CNaHA >> Kw [H 3 O + ] = 4.2 × 10 −7 × 4.69 × 10 −11 = 4.4 × 10 −9 M 15E Titration Curves for Polyfunctional Acids Fig. 15-2 Titration of 20.00 mL of 0.1000 M H2A with 0.1000 M NaOH. For H2A, Ka1 = 1.00× 10-3 and Ka2 = 1.00 × 10-7. The method of pH calculation is shown for several points and regions on the titration curve. Volume of 0.100 M NaOH, mL Ex. 15-9. Construct a curve for the titration of 25.00 mL of 0.1000 M maleic acid, HOOC-CH=CH-COOH, with 0.1000 M NaOH. H2M + H2O ⇔ H3O+ + HM- Ka1 = 1.3 × 10-2 HM- + H2O ⇔ H3O+ + M2Ka1/Ka2 is large (2 × 104) Ka2 = 5.9 × 10-7 Initial pH [H3O+] ≈ [HM-], [H2M] + [HM-] ≈ 0.1000 [H2M] = 0.1000 - [HM-] = 0.1000 - [H3O+] K a1 = 1.3 × 10 −2 [H 3 O + ] 2 = 0.1000 − [H 3 O + ] [H3O+]2 + 1.3 × 10-2 [H3O+] - 1.3 × 10-3 = 0 [H3O+] = 3.01 × 10-2, pH = 2 - log 3.01 = 1.52 97 First Buffer Region: addition of 5.00 mL of base CNaHM ≈ [HM-] = 5.00 × 0.1000/30.00 = 1.67 × 10-2 M CH2M ≈ [H2M] = (25.00 - 5.00) × 0.1000/30.00 = 6.67 × 10-2 M [H3O+] << CH2M or CHM- is not valid [HM-] = 1.67 × 10-2 + [H3O+] - [OH-] [H2M] = 6.67 × 10-2 - [H3O+] + [OH-] K a1 = [H 3O + ](1.67 × 10 − 2 + [H 3O + ]) 6.67 × 10 − 2 − [H 3O + ] = 1.3 × 10 − 2 [H3O+]2 + 2.97 ×10-2 [H3O+] - 8.67 ×10-4 = 0 [H3O+] = 1.81 ×10-2 pH = -log 1.81 × 10-2 = 1.74 Just Prior to First Equivalence Point CNaHM ≈ [HM-] = 24.90 × 0.1000/49.90 = 4.99 × 10-2 M CH2M ≈ [H2M] = (25.00 – 24.90) × 0.1000/49.90 = 2.00 × 10-4 M Mass balance: CH2M + CNaHM = [H2M] + [HM-] + [M2-] Charge balance : [H3O+] + [Na+] = [HM-] + 2[M2-] + [OH-] CNaHM = [HM-] + 2[M2-] – [H3O+] → [H3O+] = CH2M + [M2-] – [H2M] + [H 3 O ] = c H 2 M [HM-] ≈ 4.99 × 10-2 M, [H 3 O + ][HM - ] + − K a1 [H 3 O + ] K a 2 [HM - ] CH2M = 2.00 × 10-4 M Ka1 = 1.3 × 10-2 Ka2 = 5.9 × 10-7 ⎛ [HM - ] ⎞ ⎟⎟ − cH 2M [H 3 O + ] − K a 2 [HM - ] = 0 [H 3 O + ]2 ⎜⎜1 + K a1 ⎠ ⎝ [H3O+]2 + 2.00 ×10-4 [H3O+] – 2.94 ×10-8 = 0 [H3O+] = 1.014 ×10-4 pH = 3.99 at adding 24.99 mL of titrant, [H3O+] = 8.01 ×10-5 pH = 4.10 First Equivalence Point [HM-] ≈ CNaHM = 25.00 × 0.1000/50.00 = 5.00 × 10-2 M K a2 C NaHM 5.9 × 10 −7 × 5.00 × 10 −2 = [H 3 O ] = 1 + C NaHM / K a1 1 + (5.00 × 10 − 2 ) /(1.3 × 10 − 2 ) + = 7.80 × 10-5 pH = -log (7.80 × 10-5) = 4.11 Just After the First Equivalence Point CHM- = [25.00-(25.01-25.00)] × 0.1000/50.01 = 0.04997 M CM2-= (25.01 - 25.00) × 0.1000/50.01 = 1.996 × 10-5 M 98 Mass balance: CHM- + CM2- = [H2M]+[HM-]+[M2-]=0.04997+1.996×10-5=0.049999 M Charge balance : [H3O+] + [Na+] = [HM-] + 2[M2-] + [OH-] [Na+] = 25.01 × 0.1000/50.01 = 0.05001 M [H3O+] = [M2-] – [H2M] – (0.05001 – 0.049999) K a 2 [HM - ] [H 3 O + ][HM - ] [H 3 O ] = − − 1.9996 × 10 −5 + K a1 [H 3 O ] + 1.9996 ×10 −5 ± (1.9996 ×10 −5 ) 2 − 4 × 4.8438 × (−2.948 ×10 −8 ) = = 7.40 × 10 −5 M 2 × 4.8438 pH = 4.13 Second Buffer Region : addition of 25.50 mL of NaOH [M2-] ≈ CNa2M ≈ (25.50 - 25.00) × 0.1000/50.50 = 0.050/50.50 M [HM-] ≈ CNaHM ≈ [25.00-(25.50-25.00)] × 0.1000/50.50 = 2.45/50.50 M [H3O+] = 5.9 × 10-7 (2.45/50.50) /(0.050/50.50) = 2.89 × 10-5 M [H3O+] << CNa2M and CNaHM is valid and pH = -log 2.89 × 10-5 = 4.54 Just Prior to Second Equivalence Point at adding 49.90 and 49.99 mL of titrant, M2- >> HMat adding 49.90 mL CHM- = 1.335 × 10-4 and CM2- = 0.3324 M2- + H2O ⇔ HM- + OHK b1 = K w [OH − ][HM - ] [OH − ](1.335 × 10 −4 + [OH - ]) 1.00 × 10 −14 = = = = 1.69 × 10 −8 2−7 K a2 [M ] (0.03324 − [OH ]) 5.9 × 10 [OH-]2 + (1.335 × 10-4 + Kb1) [OH-] – 0.03324 Kb1 = 0 [OH-] = 4.10 × 10-6 M → pOH = 5.39 → pH = 14 – 5.39 = 8.61 at adding 49.90 mL: [OH-] = 1.80 × 10-5 M → pH = 9.26 Second Equivalence Point: addition of 50.00 mL of NaOH [Na2M] = 0.0333 M M2- + H2O ⇔ OH- + HM[OH-] ≈ [HM-], K w [OH - ][HM - ] K b1 = = = 1.69 × 10 −8 2 Ka2 [M ] [M2-] = 0.0333 - [OH-] ≅ 0.0333 [OH-]2/0.0333 = 1.69 × 10-8, [OH-] = 2.38 × 10-5 pH = 14.00 – (- log 2.38 × 10-5) = 9.38 99 pH Just Beyond the Second Equivalence Point: add 50.01 mL of NaOH cM2- =25.00 × 0.1/75.01 =0.03333 M excess [OH-] = 1.00 × 0.01/75.01 = 1.3333 × 10-5 M [M2-] = cM2- – [HM-] = 0.0333 – [HM-], K b1 [OH-] = 1.3333 × 10-5 + [HM-] [OH - ][HM - ] [HM - ](1.3333 ×10 −5 + [HM - ]) = = [M 2- ] 0.03333 − [HM - ] [HM-]2 + (1.33 × 10-5 + Kb1) [HM-] – 0.03333 Kb1 = 0 [HM-] = 1.807 × 10-5 M [OH-] = 1.3333 × 10-5 + 1.807 × 10-5 = 3.14 × 10-5 M pOH = 4.50 and pH = 14 – pOH = 9.50 add 50.10 mL of NaOH pH = 10.14 pH Beyond the Second Equivalence Point: add 51.00 mL of NaOH [OH-] = 1.00 × 0.1000/76.0 = 1.32 × 10-3 pH = 14.00 - (- log 1.32 × 10-3) = 11.12 Volume of 0.1000 M NaOH, mL Volume of 0.1000 M NaOH, mL Fig. 15-3 Titration curve for Fig. 15-4 Curve for the 25.00 mL of 0.1000 M titration of 0.1000 M H3PO4 maleic acid, H2M, with (A), 0.1000M oxalic acid 0.1000 M NaOH. (B), and 0.1000 M H2SO4(C). Volume of 0.1000 M HCl, mL Fig. 15-5 Curve for the titration of 25.00 mL of 0.1000M Na2CO3 with 0.1000 M HCl. 15F Titration Curves for Polyfunctional Bases CO3 + H2O ⇔ HCO3 + OH K w 1.00 × 10 −14 −4 = 2 . 13 × 10 K b1 = = K a 2 4.69 × 10 −11 HCO3- + H2O ⇔ H2CO3 + OH- K w 1.00 × 10 −14 −11 K b2 = = = 6 . 7 × 10 K a1 1.5 × 10 − 4 2- - - 100 15G Titration Curves for Amphiprotic Species In NaH2PO4 solution: can be titrate with a standard base solution K a2 = 6.32 × 10 −8 H2PO4- + H2O ⇔ HPO42- + H3O+ - - H2PO4 + H2O ⇔ OH + H3PO4 K b3 K w 1.00 × 10 −14 = = = 1.41× 10 −12 −3 K a1 7.11 × 10 In Na2HPO4 solution: can be titrate with a standard acid solution K a3 = 4.5 ×10 −13 HPO42- + H2O ⇔ PO43- + H3O+ 2- - K b2 = - HPO4 + H2O ⇔ OH + H2PO4 K w 1.00 × 10 −14 = = 1.58 × 10 −7 −8 K a2 6.32 × 10 15H The Composition of Solutions of a Polyprotic Acid as a Function of pH α0 = [H 2 M] CT [HM - ] α1 = CT α2 = α0 + α1 + α2 = 1 CT = [H2M] + [HM-] + [M2-] α0 = [H 3O + ]2 [H 3O + ]2 + K a1[H 3O + ] + K a1K a2 α2 = [M 2 - ] CT α1 = K a1[H 3O + ] [H 3O + ]2 + K a1[H 3O + ] + K a1K a2 K a1K a2 [H3O + ]2 + K a1[H3O + ] + K a1K a2 Fig 15-6 Composition of HM Fig. 15-7 solution as a function of pH. Fig. 15-7 Titration of 25.00 mL of 0.1000 M maleic acid with 0.1000 M NaOH. The solid curves are plots of alpha values as a function of volume. The broken curve is a plot of pH as a function of volume. 101 102
© Copyright 2025 Paperzz