MATH 126 QUIZ 8 Wed. Dec. 7, 2016 NAME (please print legibly): 1. (14 pts) Evaluate the following indefinite integrals. Z 1 (a) (3x2 − 4x−9 + 6x−1 )dx = x3 + x−8 + 6 ln |x| + C 2 Z (b) sec2 t dt = tan(t) + C √ 4 Z (c) Z x1/4 dx = 6 · 45 x5/4 + C 6 x dx = 6 Z Z (2x + 1)(x − 3)dx = (d) Z u+4 du = u Z e−23x dx = (e) (f) Z (2x2 − 5x − 3)dx = 23 x3 − 25 x2 − 3x + C (1 + 4u−1 )du = u + 4 ln |u| + C 1 e−23x −23 +C Z (g) cos(t/12)dt = 12 sin(t/12) + C 2. (8 definite integrals. Z 4pts) Evaluate the following 4 3 (a) (x2 + 2x)dx = 13 x3 + x2 = ( 43 + 16) − ( 13 + 1) 1 1 Z ln 3 (b) (c) 1 Z x 0 0 Z ln 3 e dx = e = eln 3 − e0 = 3 − 1 = 2 x 5 5 1 dx = ln |x| = ln 5 − ln 1 = ln 5 x 1 π/2 (d) sin xdx = 0 (since sin x is odd). −π/2 3. (10 Z pts) Evaluate the following integrals using the substitution method. (a) 2x(1 + x2 )100 dx. Let u = 1 + x2 , du = 2xdx. We get: Z u100 du = (1 + x2 )101 u101 +C = + C. 101 101 Z (b) x dx. Make the same substitution as in the previous problem. Then x dx = 12 du, 1 + x2 so we get: Z 1 1 du = 12 ln |u| + C = 12 ln |1 + x2 | + C. 2 u Z (c) esin(x) cos(x)dx. Let u = sin x, du = cos x dx. Then we get Z Z (d) x4 sin(x5 )dx. Let u = x5 , du = 5x4 dx. Then we get: 1 5 Z (e) eu du = eu + C = esin x + C. Z 1 1 sin u du = − cos u + C = − cos(x5 ) + C. 5 5 π/2 cos3 (x) sin(x)dx. Let u = cos x, du = − sin x dx. When x = 0, u = cos(0) = 1. 0 When x = π/2, u = cos(π/2) = 0. The integral becomes Z 0 Z 1 u4 1 1 3 − u du = u3 du = = . 4 0 4 1 0 4. (0 pts) (FOR PRACTICE ONLY) Take the DERIVATIVE of the following functions. (a) f (x) = 23 x3 + πx2 − e3 f 0 (x) = 2x2 + 2πx. (b) g(x) = ln(2x3 + 3x + 1) g 0 (x) = (c) h(x) = 2x + 1 x2 − 1 h0 (x) = 6x2 + 3 . 2x3 + 3x + 1 (x2 − 1)(2) − (2x + 1)(2x) . (x2 − 1)2 (d) A(x) = e3x sin x A0 (x) = e3x cos x + 3e3x sin x. (e) B(x) = cos(sin(tan(x))) B 0 (x) = − sin(sin(tan(x))) cos(tan(x)) sec2 (x).
© Copyright 2026 Paperzz