MATH 155/GRACEY INTEGRAL REVIEW THEOREM: THE CONSTANT RULE Let k be a real number. ∫ kdx = x + C Example 1: Find the indefinite integral. ∫ −3dx THEOREM: THE POWER RULE Let n be a rational number. x n +1 ∫ x dx = n + 1 + C , n ≠ −1 n Example 2: Find the following indefinite integrals. a. ∫x −5 dx b. ∫x 12 dx c. ∫x −2 3 dx THEOREM: THE CONSTANT MULTIPLE RULE If f is an integrable function and c is a real number, then cf is also integrable and ∫ cf ( x ) dx = c ∫ f ( x )dx MATH 155/GRACEY INTEGRAL REVIEW 3 Example 3: Find the area of the region bounded by f ( x ) = 2 x , x = 1 , x = 3 , and y = 0 . THEOREM: THE SUM AND DIFFERENCE RULES The sum (or difference) of two integrable functions f and g is itself integrable. Moreover, the antiderivative of f + g (or f − g ) is the sum (or difference) of the antiderivatives of f and g . ∫ f ( x ) + g ( x )dx = ∫ f ( x ) dx + ∫ g ( x ) dx ∫ f ( x ) − g ( x ) dx = ∫ f ( x ) dx − ∫ g ( x ) dx Example 4: Find the indefinite integral. a. x − 5x2 ∫ x dx b. ∫(x 3 2 + 1) dx MATH 155/GRACEY INTEGRAL REVIEW THEOREM: ANTIDERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS ∫ sin xdx = − cos x + C ∫ csc x cot xdx = − csc x + C ∫ sec xdx = tan x + C ∫ tan xdx = − ln cos x + C ∫ sec xdx = ln sec x + tan x + C 2 ∫ cos xdx = sin x + C ∫ sec x tan xdx = sec x + C ∫ csc xdx = − cot x + C ∫ cot xdx = ln sin x + C ∫ csc xdx = − ln csc x + cot x + C 2 Example 5: Integrate. a. b. ∫ sin 2 xdx ∫ ( − cscθ + cscθ cot θ ) dθ c. ∫ 3tan xdx 1 dθ d. ∫ 1 + cos θ MATH 155/GRACEY INTEGRAL REVIEW THEOREM: ANTIDIFFERENTIATION OF A COMPOSITE FUNCTION Let g be a function whose range is an interval I and let f be a function that is continuous on I . If g is differentiable on its domain and F is an antiderivative of f on I , then ∫ f ( g ( x ) ) g ′ ( x ) dx = F ( g ( x ) ) + C Letting u = g ( x ) gives du = g ′ ( x ) dx and ∫ f ( u ) du = F ( u ) + C Example 6: Find the following definite and indefinite integrals. a. ∫(x ) b. 2 ∫ x ( 5 − 2 x ) dx 1 − x dx 5 MATH 155/GRACEY INTEGRAL REVIEW c. ∫ cos d. 4 + 5x 3 2 ∫ x 5 e. 2 3xdx dx 5 + 6x + x2 ∫3 5 + x dx MATH 155/GRACEY INTEGRAL REVIEW 2 f. ∫ x − 1 dx 0 π g. 3 ∫π tan 3 x sec 2 xdx 4 Theorem: LOG RULE FOR INTEGRATION Let u be a differentiable function of x. 1. 1 ∫ x dx = ln x + C 2. 1 ∫ u du = ln u + C MATH 155/GRACEY INTEGRAL REVIEW Theorem: INTEGRATION RULES FOR EXPONENTIAL FUNCTIONS Let u be a differentiable function of x. 1. ∫ e dx = e x x +C 2. ∫ e du = e u u +C 1 x 3. ∫ a x dx = a + C , a is a positive real number, a ≠ 1 ln a Example 7: Find the following definite and indefinite integrals. a. b. 5t 2 − t − 1 ∫ 2 − t dx ∫ 5 ( x ln x ) 2 2 c. dx d. 1 x + ∫ x dx ∫ 1 x 2 3 (1 + x ) 1 3 dx MATH 155/GRACEY e. f. e x + e− x dx e x − e− x ∫ 2 ∫ 2e 1 0 π 2 g. x dx 1− x ∫π ( sec x )dx 3 2 INTEGRAL REVIEW h. ∫ π 1 1 3 − + tan 2 x dx 2x π 2 i. ∫π j. −x 2 ∫ dx − 2 sin x cos 2 xdx
© Copyright 2026 Paperzz