On the Strain Hardening Exponent Definition and its influence within SINTAP UNIVERSITY OF CANTABRIA Report/SINTAP/UC/07 April 1998 J. Ruiz Ocejo F. Gutiérrez-Solana Departamento de Ciencia e Ingeniería del Terreno y de los Materiales E.T.S. de Ingenieros de Caminos, Canales y Puertos Universidad de Cantabria Avda de los Castros s/n 39005, Santander (Spain) Tel. 34-942-201819, Fax 34-942-201818 Report/SINTAP/UC/07 University of Cantabria Page 1 of 26 1. INTRODUCTION During the last months, a specific group formed by British Steel, GKSS and the University of Cantabria has been working on different aspects of the SINTAP Procedure related to the Y/T ratio as the following: • Estimation of Y/T from YS. • Definition of N and estimation from Y/T. • ∗ for Lr ∗ for Lr > 1. 1. Treatment of yield plateau. The University of Cantabria has carried out the analysis of the second point. During a meeting held in Paris in last February, the first results were presented (ref: Report SINTAP/UC/06) about the treatment for Lr 1. There, it was agreed that further work had to be done on the different definitions of N. 2. WORK DONE In order to clarify the use of N within SINTAP, the University of Cantabria was told to reanalyse stress-strain curves and to calculate the strain hardening exponent through different ways. It was decided to perform the calculations by varying the last point considered in the statistical fit. Therefore, four different intervals have been considered: • From YS up to UTS -noted in further figures as N (Y - U)-. • From YS up to the mean value of flow stress and UTS -noted in further figures as N (Y - (F+U)/2)-. • From YS up to flow stress -noted in further figures as N (Y - F)-. • From YS up to the mean value of yield stress and flow stress -noted in further figures as N (Y - (Y+F)/2)-. Report/SINTAP/UC/07 University of Cantabria Page 2 of 26 Also, for all intervals, two types of fits have been done depending on whether or not the yield point is fixed. Therefore, eight N values have been determined for each material studied. The objective of such analysis is to evaluate the differences between these definitions of N and to guarantee conservatism when it is predicted by means of the Y/T ratio in order to be used in a FAD or in a CDF. 3. RESULTS In the following pages (4 to 22), the results corresponding to the stress-strain curves of the nineteen studied materials which follow are presented: • 4Y14A2 S275 JR Steel -provided by British Steel-. • 4Y17A2 S355 J2 Steel -provided by British Steel-. • Y6T8D 355 EMZ Steel -provided by British Steel-. • Y6T26H 450 EMZ Steel -provided by British Steel-. • 4Y18A2 450 EMZ Steel -provided by British Steel-. • Microalloyed Steel E500. • Y6A22D2C StE690 Steel -provided by British Steel-. • Y6A4A4D StE690 Steel -provided by British Steel-. • Microalloyed Steel E690 (1). • Microalloyed Steel E690 (2). • Microalloyed Steel E690 (3). • Microalloyed Steel E690 (4). • Microalloyed Steel E500. • Normalised Steel 4135A (1). • Normalised Steel 4135A (2). • Quenched Steel 4135B. Report/SINTAP/UC/07 University of Cantabria Page 3 of 26 • Austenitic Steel. • Aged Stainless Steel. • Stainless Weld Steel. • Aluminium. 4. ANALYSIS In pages 23 to 25 different comparisons between the results are shown. The graphics on the left hand side of the page compare the values directly and a reference line (N=N) is also plotted; the graphics on the right hand side compare the values relatively and the reference line drawn corresponds to (N/N=1). Pages 23 and 24 present comparisons between N values where the difference is the last point considered in the mathematical fit for both yield point fixed or not. All values are compared to the N value calculated up to UTS which corresponds to the common use. It can be seen that the less points considered, the higher the relative difference is, specially when the value is obtained only up to the mean value of YS and flow stress. Another remarkable point could be that, for low N values, these different N definitions lead to lower N values than the usual one, but for higher ones, it could lead to even higher figures. This change can be placed at about 0.3. In page 25, the comparison is between N values with the same points considered but fixing or not the yield point. The graphics show that there are small differences between them. It also can be seen that, generally, N values with yield point fixed are lower than N values with yield point not fixed. Finally, in page 26, a full diagram is presented where N is plotted versus Y/T ratio. Different reference lines are also drawn. Within SINTAP, a lower bound with the simplest possible mathematical expression has been tried to be found in order to assure conservative assessment diagrams for Lr >1. Based on several studies, a very simple function has been suggested: 0.5*(1 - Y/T). It can be seen through this figure and the following one (detail) that this line cannot be considered anymore as it could lead to non-conservative results, specially when N is Report/SINTAP/UC/07 University of Cantabria Page 4 of 26 analysed by fixing the yield point and only up to the flow stress or the average between this and the yield stress. These values recommend a lower bound between 0.3 and 0.4 times (1 - Y/T). Then, a final function should be defined within Consortium. Report/SINTAP/UC/07 University of Cantabria Page 5 of 26 4Y14A2 S275 JR Steel 700 600 True stress 500 400 300 200 100 0 0.00 0.05 0.10 0.15 0.20 0.25 True strain σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 367.9 730.7 576.8 0.6378 700 700 600 600 500 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 400 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point not fixed Log true stress Log true stress Stress-strain curve 500 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 400 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 6 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 20 0.29888 0.9958 0.27654 0.9924 14 0.31022 0.9921 0.27345 0.9836 10 0.30366 0.9834 0.26148 0.9717 4 0.21853 0.9658 0.19559 0.9580 Report/SINTAP/UC/07 University of Cantabria Page 7 of 26 4Y17A2 S355 J2 Steel 800 700 True stress 600 500 400 300 200 100 0 0.00 0.05 0.10 0.15 True strain 0.20 0.25 σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 423.9 795.9 625.9 0.6773 800 800 700 700 600 500 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 400 Log true stress Log true stress Stress-strain curve 600 500 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 400 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point not fixed 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 8 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 17 0.26793 0.9972 0.25555 0.9958 12 0.28266 0.9955 0.25673 0.9899 9 0.28505 0.9894 0.24839 0.9786 5 0.22290 0.9717 0.19893 0.9641 Report/SINTAP/UC/07 University of Cantabria Page 9 of 26 Y6T8D 355 EMZ Steel 700 600 True stress 500 400 300 200 100 0 0.00 0.05 0.10 0.15 0.20 0.25 True strain Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 408.3 706.9 542.7 0.7524 700 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 600 Log true stress Log true stress 700 500 400 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 600 500 400 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point not fixed 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 10 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 16 0.26052 0.9974 0.24013 0.9937 11 0.26094 0.9947 0.23514 0.9885 7 0.25231 0.9866 0.22197 0.9771 4 0.19617 0.9728 0.17827 0.9670 Report/SINTAP/UC/07 University of Cantabria Page 11 of 26 Y6T26H 450 EMZ Steel 800 700 True stress 600 500 400 300 200 100 0 0.00 0.05 0.10 0.15 True strain Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 540.5 771.6 656.3 0.8236 700 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) Log true stress Log true stress 800 600 500 0.01 Log true strain Logarithmic least square fits Yield point not fixed 0.1 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 600 500 0.01 Log true strain 0.1 Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 12 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 21 0.15588 0.9889 0.13230 0.9751 14 0.13937 0.9848 0.11940 0.9720 10 0.12201 0.9857 0.10687 0.9757 5 0.08932 0.9875 0.08150 0.9818 Report/SINTAP/UC/07 University of Cantabria Page 13 of 26 4Y18A2 450 EMZ Steel 800 700 True stress 600 500 400 300 200 100 0 0.00 0.05 0.10 0.15 True strain Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 572.6 802.7 670.7 0.8537 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 Log true stress Log true stress 800 600 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 600 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point not fixed 0.02 0.04 0.06 0.08 0.1 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 14 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 14 0.14848 0.9840 0.12067 0.9626 11 0.13778 0.9772 0.11154 0.9549 7 0.10689 0.9663 0.08928 0.9492 5 0.08084 0.9694 0.07250 0.9625 Report/SINTAP/UC/07 University of Cantabria Page 15 of 26 Microalloyed Steel E500 700 600 True stress 500 400 300 200 100 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 True strain Stress-strain curve Log true stress 640 620 σu (MPa) UTS (MPa) YS/UTS 540.0 676.5 636.0 0.8491 660 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 600 580 620 600 580 560 560 540 540 0.004 0.006 0.008 0.01 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 640 Log true stress 660 σy ≈ YS (MPa) 0.02 Log true strain Logarithmic least square fits Yield point not fixed 0.04 0.06 0.004 0.006 0.008 0.01 0.02 0.04 Log true strain Logarithmic least square fits Yield point fixed 0.06 Report/SINTAP/UC/07 University of Cantabria Page 16 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 88 0.08995 0.9858 0.07622 0.9721 64 0.07944 0.9818 0.06951 0.9726 46 0.06619 0.9858 0.06259 0.9841 23 0.05196 0.9915 0.05650 0.9868 Report/SINTAP/UC/07 University of Cantabria Page 17 of 26 Y6A22D2C StE690 Steel 1000 True stress 800 600 400 200 0 0.00 0.02 0.04 0.06 0.08 True strain 0.10 0.12 0.14 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 680.0 889.9 770.8 0.8822 900 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) Log true stress Log true stress 900 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 800 700 700 0.01 0.1 Log true strain Logarithmic least square fits Yield point not fixed 0.01 Log true strain Logarithmic least square fits Yield point fixed 0.1 Report/SINTAP/UC/07 University of Cantabria Page 18 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 17 0.10546 0.9755 0.08282 0.9485 12 0.09203 0.9679 0.07306 0.9424 8 0.07217 0.9635 0.05949 0.9443 5 0.05171 0.9692 0.04554 0.9596 Report/SINTAP/UC/07 University of Cantabria Page 19 of 26 Y6A4A4D StE690 Steel 1000 True stress 800 600 400 200 0 0.00 0.02 0.04 0.06 True strain 0.08 0.10 0.12 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 734.6 946.5 841.0 0.8735 900 1000 True values N (Y -U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) Log true stress Log true stress 1000 800 700 900 True values N (Y -U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 800 700 0.01 Log true strain Logarithmic least square fits Yield point not fixed 0.1 0.01 Log true strain Logarithmic least square fits Yield point fixed 0.1 Report/SINTAP/UC/07 University of Cantabria Page 20 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 14 0.07153 0.9610 0.05847 0.9419 10 0.06079 0.9603 0.05160 0.9466 6 0.04371 0.9772 0.04044 0.9735 4 0.03472 0.9939 0.03439 0.9939 Report/SINTAP/UC/07 University of Cantabria Page 21 of 26 Microalloyed Steel E690 (1) 1000 True stress 800 600 400 200 0 0.00 0.01 0.02 0.03 True strain 0.04 0.05 0.06 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 840.4 952.1 904.0 0.9296 940 True values N (Y -U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 920 Log true stress Log true stress 940 900 880 920 900 880 860 860 840 840 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point not fixed 0.04 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point fixed 0.04 Report/SINTAP/UC/07 University of Cantabria Page 22 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 68 0.05169 0.9837 0.04825 0.9801 56 0.04383 0.9829 0.04224 0.9818 49 0.03689 0.9923 0.03759 0.9920 38 0.03449 0.9889 0.03710 0.9843 Report/SINTAP/UC/07 University of Cantabria Page 23 of 26 Microalloyed Steel E690 (2) 1000 True stress 800 600 400 200 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 True strain Stress-strain curve Log true stress 900 σu (MPa) UTS (MPa) YS/UTS 809.0 937.3 874.0 0.9256 920 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 900 Log true stress 920 σy ≈ YS (MPa) 880 860 880 860 840 840 820 820 0.006 0.008 0.01 0.02 0.04 Log true strain Logarithmic least square fits Yield point not fixed 0.06 True values N (Y -U) N (Y - (F+U)/2) N (Y -F) N (Y - (Y+F)/2) 0.006 0.008 0.01 0.02 0.04 Log true strain Logarithmic least square fits Yield point fixed 0.06 Report/SINTAP/UC/07 University of Cantabria Page 24 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 122 0.06488 0.9703 0.04866 0.9357 81 0.05361 0.9633 0.04214 0.9378 51 0.04055 0.9728 0.03521 0.9629 23 0.02806 0.9929 0.02884 0.9925 Report/SINTAP/UC/07 University of Cantabria Page 25 of 26 Microalloyed Steel E690 (3) 1000 True stress 800 600 400 200 0 0.00 0.01 0.02 0.03 True strain 0.04 0.05 0.06 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 840.0 953.2 905.0 0.9282 940 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 920 Log true stress Log true stress 940 900 880 920 900 880 860 860 840 840 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point not fixed 0.04 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point fixed 0.04 Report/SINTAP/UC/07 University of Cantabria Page 26 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 67 0.05133 0.9833 0.04797 0.9797 56 0.04385 0.9830 0.04227 0.9818 49 0.03691 0.9924 0.03763 0.9920 38 0.03451 0.9889 0.03715 0.9842 Report/SINTAP/UC/07 University of Cantabria Page 27 of 26 Microalloyed Steel E690 (4) 1000 True stress 800 600 400 200 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 True strain σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 924.0 1051.8 994.0 0.9296 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) Log true stress Log true stress Stress-strain curve 1000 980 960 940 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y- (Y+F)/2) 1000 980 960 940 920 920 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point not fixed 0.04 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point fixed 0.04 Report/SINTAP/UC/07 University of Cantabria Page 28 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 156 0.05953 0.9774 0.04821 0.9568 108 0.05185 0.9741 0.04334 0.9584 63 0.03891 0.9826 0.03581 0.9787 32 0.02939 0.9936 0.03089 0.9919 Report/SINTAP/UC/07 University of Cantabria Page 29 of 26 Normalised Steel 4135A (1) 1000 True stress 800 600 400 200 0 0.00 0.01 0.02 0.03 0.04 True strain 0.05 0.06 0.07 900 σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 782.0 962.0 905.0 0.8641 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) Log true stress Log true stress Stress-strain curve 800 900 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 800 0.006 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point not fixed 0.04 0.06 0.006 0.008 0.01 0.02 0.04 Log true strain Logarithmic least square fits Yield point fixed 0.06 Report/SINTAP/UC/07 University of Cantabria Page 30 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 107 0.09232 0.9939 0.08710 0.9920 67 0.08394 0.9916 0.08200 0.9913 42 0.07221 0.9953 0.07613 0.9933 21 0.06676 0.9893 0.07821 0.9678 Report/SINTAP/UC/07 University of Cantabria Page 31 of 26 Normalised Steel 4135A (2) 1200 True stress 1000 800 600 400 200 0 0.00 0.01 0.02 0.03 0.04 0.05 True strain 0.06 0.07 0.08 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 690.0 1123.1 1042.0 0.6622 1000 900 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 0.006 0.008 0.01 0.02 Log true strain 0.04 Logarithmic least square fits Yield point not fixed 0.06 Log true stress Log true stress 1000 900 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 0.006 0.008 0.01 0.02 Log true strain 0.04 Logarithmic least square fits Yield point fixed 0.06 Report/SINTAP/UC/07 University of Cantabria Page 32 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 95 0.18575 0.9901 0.22388 0.9641 66 0.20777 0.9931 0.24229 0.9761 31 0.24804 0.9938 0.27957 0.9832 12 0.31911 0.9971 0.33914 0.9943 Report/SINTAP/UC/07 University of Cantabria Page 33 of 26 Quenched Steel 4135B 2000 True stress 1600 1200 800 400 0 0.000 0.005 0.010 0.015 0.020 0.025 0.030 True strain σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 1245.0 2039.3 1981.9 0.6282 2000 2000 1800 1800 1600 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 1400 1200 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point not fixed Log true stress Log true stress Stress-strain curve 1600 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 1400 1200 0.008 0.01 0.02 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 34 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 54 0.39377 0.9890 0.44835 0.9767 33 0.47407 0.9970 0.50530 0.9941 20 0.52602 0.9992 0.54161 0.9986 10 0.56462 0.9998 0.56748 0.9998 Report/SINTAP/UC/07 University of Cantabria Page 35 of 26 Austenitic Steel 1000 True stress 800 600 400 200 0 0.00 0.10 0.20 0.30 True strain 0.40 0.50 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 236.7 968.0 611.8 0.3869 1000 1000 600 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 800 Log true stress Log true stress 800 400 600 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 400 200 200 0.01 0.1 Log true strain Logarithmic least square fits Yield point not fixed 0.01 Log true strain 0.1 Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 36 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 19 0.27312 0.9753 0.23153 0.9599 17 0.24982 0.9768 0.21521 0.9639 14 0.21247 0.9809 0.18973 0.9731 11 0.16724 0.9975 0.16269 0.9970 Report/SINTAP/UC/07 University of Cantabria Page 37 of 26 Aged Stainless Steel 1000 True stress 800 600 400 200 0 0.00 0.05 0.10 0.15 True strain 0.20 0.25 0.30 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 335.0 934.9 712.0 0.4705 1000 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 800 Log true stress Log true stress 800 1000 600 400 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 600 400 0.01 Log true strain 0.1 Logarithmic least square fits Yield point not fixed 0.01 Log true strain 0.1 Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 38 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 65 0.24793 0.9953 0.23898 0.9945 41 0.22953 0.9975 0.22840 0.9975 25 0.21337 0.9993 0.22022 0.9986 14 0.21991 0.9984 0.22967 0.9970 Report/SINTAP/UC/07 University of Cantabria Page 39 of 26 Stainless Weld Steel 1000 True stress 800 600 400 200 0 0.00 0.05 0.10 0.15 0.20 0.25 True strain 0.30 0.35 0.40 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 454.0 987.4 684.0 0.6637 1000 800 1000 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 900 Log true stress Log true stress 900 700 600 500 800 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 700 600 500 0.01 Log true strain 0.1 Logarithmic least square fits Yield point not fixed 0.01 0.1 Log true strain Logarithmic least square fits Yield point fixed Report/SINTAP/UC/07 University of Cantabria Page 40 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 95 0.19908 0.9516 0.14552 0.9136 63 0.16607 0.9544 0.12891 0.9277 37 0.12807 0.9668 0.10887 0.9542 17 0.08970 0.9926 0.08765 0.9923 Report/SINTAP/UC/07 University of Cantabria Page 41 of 26 Aluminium 250 True stress 200 150 100 50 0 0.00 0.02 0.04 0.06 0.08 True strain 0.10 0.12 0.14 Stress-strain curve σy ≈ YS (MPa) σu (MPa) UTS (MPa) YS/UTS 82.6 257.2 224.0 0.3687 200 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 100 90 Log true stress Log true stress 200 True values N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 100 90 80 80 0.01 Log true strain Logarithmic least square fits Yield point not fixed 0.1 0.01 Log true strain Logarithmic least square fits Yield point fixed 0.1 Report/SINTAP/UC/07 University of Cantabria Page 42 of 26 Number of points σy - σu σy - σ + σu 2 σy - σ σy - σy + σ 2 Yield point not fixed Yield point fixed N r N r 127 0.29646 0.9881 0.32501 0.9827 58 0.35820 0.9985 0.35863 0.9985 31 0.37875 0.9997 0.36629 0.9990 17 0.36302 0.9993 0.34943 0.9983 Report/SINTAP/UC/07 University of Cantabria Internal Use Only 0.6 1.75 0.5 1.50 0.4 1.25 N/N N Page 43 of 26 0.3 1.00 0.75 0.2 0.50 0.1 N (Y - (F+U)/2) / N (Y - U) N (Y - (F+U)/2) 0.25 0 0.1 0.2 0.3 N (Y - U) 0.4 0 0.5 0.6 1.75 0.5 1.50 0.4 1.25 N/N N 0 0.3 0.2 0.1 0.2 0.3 N (Y - U) 0.6 1.00 0.50 N (Y - F) N (Y - F) / N (Y - U) 0 0.25 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.6 1.75 0.5 1.50 0.4 1.25 N/N N 0.5 0.75 0.1 0.3 0.2 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 1.00 0.75 0.1 0.50 N (Y - (Y+F)/2) N (Y - (Y+F)/2) / N (Y - U) 0 0.25 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 1.75 0.6 N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 0.5 1.50 1.25 N/N 0.4 N 0.4 0.3 1.00 0.2 0.75 0.1 0.50 N (Y - (F+U)/2) / N (Y - U) N (Y - F) / N (Y - U) N (Y - (Y+F)/2) / N (Y - U) 0.25 0 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 Comparisons between different N values as a function of the last point considered Yield point not fixed Report/SINTAP/UC/07 University of Cantabria Internal Use Only 0.6 1.75 0.5 1.50 0.4 1.25 N/N N Page 44 of 26 0.3 0.2 1.00 0.75 0.1 0.50 N (Y - (F+U)/2) N (Y - (F+U)/2) / N (Y - U) 0 0.25 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.6 1.75 0.5 1.50 0.4 1.25 N/N N 0 0.3 0.2 0.1 0.2 0.3 N (Y - U) 0.6 1.00 0.50 N (Y - F) N (Y - F) / N (Y - U) 0 0.25 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.6 1.75 0.5 1.50 0.4 1.25 N/N N 0.5 0.75 0.1 0.3 0.2 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 1.00 0.75 0.1 0.50 N (Y - (Y+F)/2) N (Y - (Y+F)/2) / N (Y - U) 0 0.25 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 1.75 0.6 N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 0.5 1.50 1.25 N/N 0.4 N 0.4 0.3 1.00 0.2 0.75 0.1 0.50 N (Y - (F+U)/2) / N (Y - U) N (Y - F) / N (Y - U) N (Y - (Y+F)/2) / N (Y - U) 0.25 0 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0 0.1 0.2 0.3 N (Y - U) 0.4 0.5 0.6 Comparisons between different N values as a function of the last point considered Yield point fixed Report/SINTAP/UC/07 University of Cantabria Internal Use Only Page 45 of 26 0.6 1.3 N yield point fixed / N yield point not fixed N (Y - U) N yield point fixed 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.8 0 N yield point fixed / N yield point not fixed 0.5 N yield point fixed 0.9 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 1.3 N (Y - (F+U)/2) 0.4 0.3 0.2 0.1 0 N (Y - (F+U)/2) / N (Y - (F+U)/2) 1.2 1.1 1 0.9 0.8 0.7 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 0 0.6 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 1.3 N yield point fixed / N yield point not fixed N (Y - F) 0.5 N yield point fixed 1 0.6 0.6 0.4 0.3 0.2 0.1 0 N (Y - F) / N (Y - F) 1.2 1.1 1 0.9 0.8 0.7 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 0 0.6 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 1.3 N yield point fixed / N yield point not fixed N (Y - (Y+F)/2) 0.5 N yield point fixed 1.1 0.7 0 0.4 0.3 0.2 0.1 0 N (Y - (Y+F)/2) / N (Y - (Y+F)/2) 1.2 1.1 1 0.9 0.8 0.7 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 1.3 N yield point fixed / N yield point not fixed 0.6 N (Y - U) N (Y - (F+U)/2) N (Y - F) N (Y - (Y+F)/2) 0.5 N yield point fixed N (Y - U) / N (Y - U) 1.2 0.4 0.3 0.2 0.1 1.2 1.1 1 0.9 N (Y - U) / N (Y - U) N (Y - (F+U)/2) / N (Y - (F+U)/2) N (Y - F) / N (Y - F) N (Y - (Y+F)/2) / N (Y - (Y+F)/2) 0.8 0.7 0 0 0.1 0.2 0.3 0.4 N yield point not fixed 0.5 0.6 0 0.1 0.2 0.3 0.4 N yield point not fixed Comparisons between different N values as a function of whether or not the yield point is fixed 0.5 0.6 Report/SINTAP/UC/07 University of Cantabria Internal Use Only Page 46 of 26 N (Y - U) not fixed N (Y - (F+U)/2) not fixed N (Y - F) not fixed N (Y - (Y+F)/2) not fixed N (Y - U) fixed N (Y - (F+U)/2) fixed N (Y - F) fixed N (Y - (Y+F)/2) fixed 0.6 0.5 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Y/T All different definitions of N versus Yield/Tensile Ratio 0.16 0.14 0.12 0.10 N N 0.4 0.08 0.06 0.04 0.02 0.00 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 Y/T Detail of the previous figure 0.98 1.00 0.9 1
© Copyright 2026 Paperzz