79 (KIELGROUPSEMINAR,UPPSALA 1 3 - 1 4 JUNE19 Relationbetweendifferentcarbohydratesandmicrobial synthesis ofprotein S.Tamminga Reportno.130 Institute forLivestockFeedingandNutrition Lelystad,Netherlands BIBLIOTHEEK LAMDBOU'WH«*'.:.-• wn"!, WAGEAl^KN Uil CENTRALE LANDBOUWCATALOGUS 0000 0162 9605 -11.lDt£2^B2ti2D Ruminantanimalproductiongivesanimportantcontributiontotheworldshuman foodsupply.Thisismainlybecauseoftheircapability ofconverting carbohydratesin thefibrouspartsofplantsintohighqualityhuman foods. Thisconversionispossibleduetothesymbioticrelationshipbetweenruminantanimalsandmicro-organismsinhabitingtheirforestomachs.Thesemicro-organisms candegrade thefibrousorstructuralcarbohydrates ingestedbythe hostanimal,which areundigestibletothedigestive system ofmonogastrics (includingmen),toendproductswhichcan bedigestedandutilizedbyruminantsandconvertedtomilk, meatandwool. Notonly fibrouscarbohydratesaredegradedbythe micro-organisms,soareothercarbohydrates,proteins^and toalimitedextentlipids.Asaresultofthisdegradation themicro-organismsextractenergyand "buildingstones" fromthe foodingestedbythehostanimal,whichenables themtogrow.Thismicrobialgrowthmeansasynthesisof biomass containingprotein,nucleicacids,lipidsandcarbohydratesofwhichprotein formsthemajor component.This microbialproteincansubsequentlybeusedasaprotein sourcebythehostanimalandthuscancompensate theloss ofdietaryproteinintheforestomachsresultingfrom microbial degradation.Itbecomesevidentthattheintermediarymetabolismofruminantsreceivesprotein fromtwo sourcesviz.dietaryproteinwhichescapesmicrobialdegredationintheforestomachs andmicrobialprotein synthesized therein.Bothproteinsourcesaredigestedinandabsorbed fromthesmallintestine. Inthelastdecademuchattentionhasbeenpaidtoways ofincreasing theintestinalproteinsupplyinruminants.So farmostattentionwas focussedonwaysofdecreasingthe degradationofdietaryprotein (Clark,1975;Chalupa,1978; Tamminga,1979)andlessattentionwasgiventomeansof increasingthesynthesisofmicrobialprotein. Itisbeyond doubtthatthefirstlimiting factorfor thesynthesisofmicrobialproteinisenergy inadenosine- -2tri-phosphate (ATP),resulting fromthedegradationoffood (ingestedbythehostanimal.Carbohydrates formamajor ( partofthissubstrateandinthe followingsections variousaspectsoftherelationbetween dietarycarbohydratesandmicrobialproteinsynthesiswillbediscussed. 2.Microbial_growth_in_the_forestomachs_and_its_reguirements Beforediscussingvariousaspectsoftherelationbetweencarbohydratesandmicrobialgrowthitseemsappropriatetodiscuss theprinciplesofmicrobialgrowthunder anaerobicconditionsasitoccurs.inthe forestomachsof ruminants.Itwasmentionedalready thatmicrobialgrowth impliestheformationofbiomassofwhichmaincomponents areproteins,nucleicacids,carbohydrates andlipids.The nutritionalrequirementsofthemicroflora intheforestomachsofruminantsareverycomplex (Hungater 1966)and includevolatile fattyacids (VFA), carbondioxide (C0„), ammonia (NH^),aminoacids,mineralsandvitamins.Asa generalruleitmaybestatedhoweverthatmicrobialgrowth ismainlydeterminedbytheavailability ofenoughofa suitablesubstrate fromwhichenergy (ATP)andprecursors forthesynthesisofthevariousmacromoleculescanbeextracted. Inenergetictermsthedegradationofthevarious dietary components,mainly carbohydrates,proteinsand lipids,ingestedby thehostanimal,meansthereleaseof acertainamountofenergy,partofwhich istemporarily storedintheterminalpyrophosphatebondsofATP.The energy storedinATPcanbeusedbythemicro-organisms for -variouspurposes suchasmotility,transport,thesynthesis ofmacromolecules,etc.Generally thiscanbedividedinto twoprocessesviz.maintenance andgrowth.Theratioin whichenergy isusedforthetworequirementsmainly depends onthegrowthrate (StouthamerandBettenhaussen, 1973).The ATPrequired formaintenanceperunitofmicrobialdrymatter (e.g.per 100g)isconstantperunitoftime.Onthe otherhand,theATPrequired forgrowth isexpected tobe fairly constantperunitofdrymattersynthesized.Ata -3lowrateofATPgenerationmostoralloftheATPwillbe required formaintenance.AtahigherrateofATPgenerationonlypartofitwillbeneeded formaintenanceand thesurplus isavailable forgrowth.Withanincreasing rateofATPgenerationthesurplusofATPavailablefor growthwillincrease,resultinginahighergrowthrate. NotonlywillthesurplusofATPincreaseinanabsolute sense,butalsoalargerproportionofthetotalATPgeneratedwillbeavailable forgrowth,makingthegrowthmore efficient. Theenergeticefficiency isoftenexpressed asthe amountofmicrobialdrymattersynthesizedpermoleof ATP.ForthisthetermY A m Pwasintroduced (Bauchopand Eisden, 1960).ThisY A T P ismuch lowerthanthemaximumpossibleyieldatmaximumgrowthrate.Forthelattertheterm M ay Yl 5and mT,wasintroduced andforthisvaluesofbetween 2 ATP 30gofmicrobialdrymatterwereestimated (Stouthamer, 1973;HespellandBryant,1979)incontinuouscultures.Estimates forY underpracticalconditionsintherumenin vivousuallyvarybetween 10and 15 (HoganandWeston,1970). EstimatingY valuesintherumeninvivounderpracticalconditions isverydifficult (Tamminga,1978).Besides,usuallymoreinterestexistsinmicrobialprotein synthesis thaninmicrobialgrowth.Ithasthereforebecome commonpractice toexpresstheefficiency ofmicrobialproteinproduction intherumenasgofmicrobialNformedper 100goforganicmatter (OM)fermented,ratherthanpermole ofATP.Reportedvaluesusuallyrangebetween2,5 and4,0g ofNper 100gOMfermented (Armstrong,1976;Kaufmann,1977) BecauseofanaërobiosistheamountofATPwhich canbe extracted fromthedegradationoforganicmatterintheforestomachsislimitedandrestricted tosome 10to15%ofwhat canbeextracted underaerobicconditions.ThemainATPyieldingsubstrate formicrobialgrowthinthe forestomachs arecarbohydrates.Thisisnotonlybecause carbohydrates formthemajorcomponentoftheingested feed,butalsobecauseonbiochemicalgrounds fermentation of100gofcarbohydrates isexpected toyieldmoreATPthanfermentationof 100gofproteinsorlipids (Tamminga,1979). -4Thenecessary precursors forthesynthesis ofbiomass areeitherintermediates orendproductsofthedegradation ofdietary carbohydrates,proteinsandlipids (VanEsand Tamminga,1978). Quantitatively proteinsynthesis isthe mostimportantanabolicprocess.Theaminoacidswhichare required asprecursors forthisprocessmayoriginatefrom de novosynthesis,fromhydrolyzed dietaryproteinor fromhydrolyzedmicrobialprotein.Denovosynthesisis possible fromintermediates andendproductsofthemicrobialdegradationofdietary carbohydrates andproteins. BothasuitableN-source,fromwhich ammoniacanbereleasedandpreformed aminoacidsseemnecessary.Veryoften sufficientdietaryproteinisdegraded togeneratetherequiredaminoacidsand (afterdeaminationofaminoacids) ammonia.If,undercertainconditionsadditionalammoniais needed,anon-protein-N sourcefromwhich ammoniacanbe liberated,suchasurea,issufficient. 3.Availability_of_çarbohydrates_as_a_substrate_for_miçrobial growth_and_protein_synthesis 3.1.R§te_of_degradation Microbialgrowthandmicrobialproteinsynthesisare continuousprocessesofwhich theratemayvary.Theenergeticefficiency ofmicrobialgrowthisinfluencedbyits growthrateandthusfactorsinfluencing thelatterareof interest.OneoftheseistheratewithwhichATPandprecursorsbecome available fromthedegradationofsubstrate. Therateofthisdegradationdiffersbetweendifferentcarbohydrates (Johnson,1976)-anddependsoncertainphysicaland •toalesserextentchemicalproperties.Thedietarycarbohydrates canbedivided invarious classeswhich differin physicalratherthaninchemicalproperties.Suchadivision isshownintable1. -5- Table 1. Distribution_of_dietarY_çarbohYdrates fibre polysaccharides structural carbchydrates [ matrix polysaccharides celluloses hemicelluloses [ pecticsubstances carbchydrates starches [ storage polysaccharides , ,. . non-structural carbchydrates tr ^ J * fructcsans saccharose metabolic intermediates freesugars Inthe degradation of carbohydrates twoparts canbe distinguished. Firstly hydrolytic cleavage of the glycoside linkages in thepolysaccharide chain occurs.This is followedby a further degradation of the resulting monosaccharides. The rate limiting partof the degradation of carbohydrates seems tobe thehydrolytic cleavage. Before the degradation of structural carbohydrates starts a lagperiod of severalhours is usually observed (Mertens, 1978). This period mightbe required for thedevelopment of a slime layer,necessary formicrobes to attach to dietary fibre (Chenget al., 1978). Part of the structural carbohydrates is resistant against degradation aswas demonstrated inkinetic studies by Waldo et al., (1972). This is causedby encrustration of structural carbohydrates with lignin and silicawhich act asphysical barriers to the rumen micro-organisms. The remaining degradable part could be divided in two fractions ofwhich onewas degraded rather rapidly and the other more slowly (Waldoet al., 1972).Although functionally part of the structural carbohydrates, pectic substances are degraded much more rapidly than the other structural carbohydrates celluloses and hemicelluloses. This may be the result of a difference in chemical configuration. Inpectic substances a-configurations predom- -6inatewhereas incellulosesandhemicelluloses 3-configurationsaremoreimportant. Unlikestructuralcarbohydrates degradationofnonstructural carbohydrates doesnotrequirealagperiod.Degradationofstoragecarbohydrates isusually fast,butthe ratemaydiffer fromonesourcetoanother.Degradationof storagecarbohydratesmaybecomeretardedbyatemporary storageinsidethecellsofbothbacteriaandprotozoa (McAllanandSmith,1974;Czerkawski,1976). Thedegradationoffreesugars,whicharemainlypresent asmetabolicintermediateshardlyinvolvesthecleavageof glycosidicbonds,therate limitingstepinthedegradation ofcarbohydrates.Itisthereforenotsurprisingthatfree sugarsaredegradedalmostinstantaneously. 3.2. Extent_of„degradation Onlyafewdetailedstudiesareavailableontheextent ofdegradationintheforestomachsofruminants forthe variousclassesofcarbohydrates.Moststudiesonthepartitioningofdigestionofdietary componentsarerestricted toorganicmatter,energyand (crude)protein.Fromthese studiesitappearsthatusually 60-70%ofthetotalapparently digestibleorganicmatterisdigestedintheforestomachs.Differencesintheextentofdigestionofthedifferentcarbohydrateswerehoweverreported.Thesefindingscanbesummarizedasfollows: Withinthestructural carbohydrates totalapparentdigestionofcellulose andhemicellulosevaries,butofboth digestionismainly restricted totheforestomachs,particularlyindairy cows (Van'tKloosterandGaillard,1976). Hemicellulose appearstobeslightlymoreresistantagainst degradation intheforestomachs thancellulose.Insheepthe proportionoftotaldigestionofcelluloseandhemicellulose takingplaceinthe (fore)stomachstendstodecreasewitha decreasing totalapparantdigestion (Ulyattetal., 1975). Thedigestionofpecticsubstancesintheforestomachsin sheepappeared tobevirtually complete (Eganetal., 1975). Withinthenon-structural carbohydrates,storagepolysac- -7charidesusually show ahighapparentdigestion.Withinthese, starches showdifferences dependingontheirorigin.Digestion ofbarley starchoccursalmostcompletely intheforestomachs butofcornstarchandsorghumstarch amountsofover20%may escapedegradationintheforestomachs (Waldo,1973).Ofthe watersolublepolysaccharides (fructosans,saccharose)significantamountsalsoappeartoescape degradationinthe forestomachs.Thismaybebecausewatersolublepolysaccharidesofmicrobialoriginandmucusenterthesmallintestine resultinginarelatively lowapparentdigestion (65-75%of thetotaldigestion)intheforestomachs (Van 'tKlooster andGaillard,1976).Freesugarsarealmostcompletelydigestedintheforestomachs. Someresultsonsiteofdigestionofdifferentcarbohydrates,mainlyobtainedindairy cowsareshownintable2. Acrudeestimateoftheextentofdegradationofstructuralandnon-structural carbohydrates canalsobeobtained by comparing thesiteofdigestionofcrude fibre (representingpartofthestructuralcarbohydrates)andN-freeextracts (representingmostofthenon-structural carbohydrates) respectively.Inourresearchwithdairy cows,fittedwith Carbohydrate source cellulose hemicellulose pecticsubstances 1) 2) starch fructosans saccharose freesugars Total apparent digestion (% of intake) Digestion i n forestomachs (% of t o t a l app.digestion) Reference (s) 62-86 95-103 (19) 53-81 97-102 (19) 95-100 95-100 90-100 75-100 (11) (19,37) 65- 90 65- 75 (19) 90-100 80- 95 (19) Table 2.Apparentdigestionofcarbohydrates inruminantsand theproportionofthisdigestionoccurringinthe (fore-)stomachs. 1): Insheep , 2):Sheepdataincluded -8re-entrant cannulae inthesmallintestine suchstudieswere performed.Arangeofdietsconsistingoflongroughagewith groundandpelletedmixed concentrates invariousproportions werefedatvariouslevelsofintake.Meantotalapparent digestionwas foundtobe0.70 (sd=0.083)and0.84 (sd=0.40) forcrude fibreand N-freeextractsrespectivelyof whichproportionsof0.89 (sd=0.097)and0.77 (sd=0.050)were digestedinthestomachs.Theresultswere analyzedbymultipleregressionanalysis.Althoughnotstatisticallysignificant,atendencywasfoundthattotalapparentdigestionof both crudefibreandN-freeextractsslightly decreasedwith increasingdrymatterintake,andthatthedigestionofcrude fibretendedtoshiftfromtheforestomachstowardstheintestineswithanincreasingdrymatterintake. Comparingsheepanddairycowssomedifferenceswith respecttositeofdigestionofcarbohydrates seemtoexist, particularly forstructuralcarbohydrates.Indairycowsthe contributionofthelargeintestineseemsofminorimportance, whereasinsheepfedchopped foragesproportionsofupto30% ofthedigestionofstructuralcarbohydrates takingplacein thelarge intestinewerereported (Ulyattetal., 1975).A possibleexplanationofthisapparentdifference isthatcomparedwithsheep,dairy cowsaregenerally fedmoredigestiblediets. Inthefermentationofcarbohydrates anumberofstages canbe(ratherarbitrarily)distinguished,suchas: - degradationofpolysaccharides tomonosaccharides - conversionofmonosaccharides topyruvate - conversionofpyruvatetovolatile fattyacids - reductionofcarbondioxide tomethane. Degradationofpolysaccharides tomonosaccharidesmeans hydrolytic cleavageofglycosidicbondsinwhichnoATP generationoccurs.However,asafinalstepofdegradationof polysaccharides tomonosaccharides,phosphorylytic cleavage oftheglycosidic linkagesindisaccharides seemsalsoto occurintherumen.Cellobiosephosphorylase,sucrosephosphorylase andmaltosephosphorylase wereshowntobepresent -9inrumenmicro-organisms (Prins,1977).Theseenzymescatalyzethegeneralreaction: disaccharide+P. >monosaccharide+monosaccharide-phosphate Theimportanceofthesereactionsinthedegradationofpolysaccharidesintherumenishoweveruncertain (Prins,1977). Variousmetabolicpathways forthedegradationofmonosaccharidesareknowntooccurintherumen,buttheEmbdenMeyerhofpathway (EMP)predominates (Prins,1977). Thispathway leadstotheformationofpyruvate.Activationofthe monosaccharides isnecessary,requiring2molesofATPper moleofhexose.Ifphosphorylasesareinvolvedinthedegradationofdisaccharides tomonosaccharides,theresulting hexosephosphate requiresonly 1moleofATP foractivation. Afteractivationofhexoseinthedegradativepathwayofhexose-topyruvate,4molesofATParegeneratedpermoleof hexoseconverted,resultinginanetyieldof2molesofATP (2.5molesifphosphorylases areoperative)permoleofhexose converted. Oneoftheotherpathwaysofdegradationofmonosaccharides,thepentosephosphatecycle,maybecomeofsignificance ifthedietary carbohydrates containsubstantialamountsof pentoses.Thepentosesareconverted totheglycolyticintermediateshexose-phosphate andtriose-phosphate,thenultimately topyruvate.Theconversionof6molesofpentosewillyield 4molesofhexose-phosphate and2molesoftriose-phosphate, resultinginanetyieldof 10molesofATP.So,perhexoseequivalent (anon-hydrolyzedmonomerinpolysaccharideswith amolecularweightof162andequivalentto1.20 moleof pentose),pentosebasedcarbohydratesyieldthesameamount ofATPthanhexosebasedcarbohydrates. Themainendproductsoftheconversionofpyruvateare acetate,propionate,butyrateandcarbondioxide. Pyruvate canbeconvertedtoeitheracetylCoA,CO ? and H 2 (1)ortoacetylCoAandformate (2).Inbothcasesacetate canbe liberated fromacetylCoA,oftenafteraconversionto acetyl-phosphate. Propionatecanbeformedbytwopathways.Oneinvolves succinate asanintermediate andisknown as'the "dicarboxylic -10acidpathway".Theotherinvolves lactylCoAasanintermediateandiscalledthe "directreductivepathway"orthe "acrylatepathway".Undernormalconditions thedicarboxylic pathwaypredominates,butifhigh graindietsarefedthe acrylatepathwaymaybecomeimportant. The formationofbutyrateoccursusuallybyareversal ofß-oxidationfromtwomolesofacstylCoA.Fromtheresulting butyrylCoA,butyratecanbegenerated,oftenafterconversion tobutyryl-P. Thedegradativepathwaysinvolvedintheconversionof pyruvate toVFAcomprisesofanumberofsteps,someofwhich areassociatedwithafreeenergy change largeenoughto enablethegenerationofATP.ThegenerationofATPfromADP andP.requiresafreeenergychangeunderstandardconditions (AG 1 ) ofatleast7.6kcal/mole (Thaueretal., 1977). Infigure1 asurvey isgivenoftheAG^ (derived fromThaueretal., 1977)ofthevarious stepsinthepathways.ofconversionof pyruvatetoVFA. ComparingtheA G Q required forthegenerationofATP with theseinfigure 1forthevarioussteps,suggeststhe possibility forthegenerationofATPatanumberofsites. However,theactualconditionsintherumenorwithina bacterial cellmay differmarkedly fromthestandardconditionsunderwhichA G Q wasobserved,whichmaypreventATP Hexose +23.4 I •* oxalo-acetate +5.6 - X-9 A 2- pyruvate +0.6 malate + 0.9 fumarate 2-20.6 acetate aceto-acetate < -3.0 | +11.4 3 -OH-butyrate -2.0 A _ crotonate -8.5 I butyrate i succinate i -8.4 acetate -4.1 propionate F i g u r e 1. The c h a n g e i n s t a n d a r d f r e e e n e r g y (AG0 i n kcal) associated with the various steps in the conversion o f p y r u v a t e t o VFA i n t h e r u m e n . 2- 2- -11- generation atcertainsteps. Itisbeyonddoubtthattheformationofacetateand butyrate fromacetylCoAandbutyrylCoAviaacetyl-Pandbutyryl-Prespectively,yields 1moleofATP.Itshouldbenoted thatbecauseoftheformationofacetoacetylCoA from2moles ofacetylCoA 1potentialsiteofATP-generation islost. Thereishoweversomeevidence thatthereductionofcrotonylCoAtobutyrylCoAmayyieldadditionalATPinsomestrains ofrumenbacteria,butnotinothers (Prins,1977). Withrespecttotheformationofpropionateviathedicarboxylicpathway thereductionoffumaratetosuccinate causesa^ G 0 largeenough topermitATP-generation,and thisseemstobethecaseinanumberofstrainsofrumen bacteria (Prins,1977;ReddyandPeck,1978). Ithaseven beenassumedthatthisreductionyields 2molesofATPincertainstrains (Stouthamer,1976). Intheotherpropionategeneratingpathway thereduction ofacrylate topropionatemayyieldATP,butintheconversion oflactatetoacrylate,lactylCoAisactivated tophospholactate,whichinturnisconvertedtoaerylyCöA.Thisactivation isattheexpenseofacetyl-P (whichwouldnormallyresultin theformationofATP), thusnullifying theATPyielddueto thereductionofacrylate. Theconversionofcarbohydrates topyruvateandfurther toVFAresultsinasurplusofreduction-equivalents,either asNADHorasH 2 .Formattersofconveniencethetermreduction-equivalents isusedforboth.This "pool"ofreduction equivalents isveryimportantintheregulationofthefermentationpattern. Intheconversionofcarbohydrates topyruvatethereductionequivalentsbecomepresentasNADH.Inordertokeep the fermentation going,anoxidationofthiscompoundback -f. toNAD isrequired.Thisispossibleby thegenerationofH„: NADH+H + »NAD++H -12Th eequilibriumofthisreaction liesverymuchtotheleft andthereactionwillonlyproceed ifthepartialpressure ofH 2 (PH„)isextremely low.ThislowPH~ canbemaintained intherumenbecausetheH iscapturedbymethanogenicbacteriaandusedforthereductionofC0„toCH..Althoughthe exactmechanismofCK.-formationisstillratherobscure,it isgenerallybelieved thatCH-formationyields 1moleofATP permoleofCH.generated (Demeijer,1976;Thaueretal., 1977). Thedegradationofpyruvate toacetylCoAalsogives yieldtothe formationofH„,withoutNAD beingrequired. ThisH-formationproceedsevenathighconcentrationsofH» (Thauer,etal., 1977). Ifthemethanogenicbacteriacankeep thePHp lowenough the fermentationofcarbohydrateswill proceed,mainly toacetate.IfhoweverthePH~becomestoo high,forinstancebecausethefermentation rateandthereforetherateofH„-formationfromtheconversionofpyruvate toacetylCoAistoohigh,theliberationofH„fromNADHwill nolongerproceed.TopreventaccumulationofNADH,other electronacceptorshavetobefoundandthefermentationis diverted fromacetatetowardsbutyrateand/orpropionate. Theformationofbutyrate fromacetylCoAmeanstheconsumptionofreduction-equivalents ofNADH.Theformationofpropionatealsomeanstheuptakeofreductionequivalents.By divertingthepattern,fermentationcanproceed. Divertingthefermentationpatternaway fromthegenerationofCH.,meansthelossofthegenerationof1moleof ATP foreach 8reductionequivalents,which isusuallynot compensated inthediverted fermentationpattern.Ittherefore frequentlymeansanenergetically less favourable systemanddiversion isusually restricted towhatisabsolutelynecessary.Theresultmaybeamixed fermentationwith forinstancetheproductionofacetateandenoughbutyrate toconsumethereductionequivalents ofNADHgeneratedin theconversionofhexose topyruvate (Thaueretal., 1977). Figure2showsasimplifiedbiochemicalpathwayofthe degradationofpolysaccharides andthesiteswhereATPis believed tobegenerated,orwhereATP (orotherenergyrich compounds)isneeded foractivation. •13- polysaccharide * hexose disaccharide „•• -,i =» hexose-P ATP •+ "|ATP| hexose-di-P i triose-di-P % oxaloaoetate acetylCcA I acetoacetylCoA i succinylCoA 3-OH-butyrlCoA l crotonylCoA f >|ATP? butyrylCoA acetyl-P ATP ATP ? i methylnalonylCoA «——*propiony ICoA 4 butyryl-P , . I »(AH acetate propionate butyrate Fig. 2.Simplified pathway for the degradation of carbohydrates in the rumen and sites of ATP generation. In table 2 a summary is given of theATP yields per hexose-equivalent if acetate,butyrate,propionate or lactate are theonly end product of fermentation respectively. It appears that differences inATP yield dooccur depending onwhether phosphorylation is involved in the cleavage of glycoside bonds of disaccharides ornot,depending onwhich pathway of propionate formation is used and depending on the surplus of reduction equivalents which canbe used for the formation of CH 4 , yielding 1mole ofATP per surplus of 8reduction equivalents. -14direct ATP- yield acid acetate butyrate propionate I J ) propionate I I 4 ) lactate 4 1 ' -4.5 2 > 3 -3.5 3 -6.5 2 -2.5 2 -2.5 W total ATP-yield +8 +4 -4 -4 0 5 - 5.5 4.0- 5.0 3.0- 6.0 1.5 -2.0 2-2.5 Table 2. ATP-yield per hexose equivalent converted to the various volatile fatty acids. 1) no disaccharide-phosphorylases involved 2) disaccharide-phosphorylases involved 3) dicarboxylic acid pathway I 4) direct reductive pathway. Under certain conditions, particularly when concentrate rich diets are fed, lactic acid may become the end product of rumen fermentation in significant quantities. From the schematic pathway in figure 2 it can easily be seen that the ATP yield per hexose equivalent converted to lactate is low compared with the conversion in volatile fatty acids, the conversion to propionate via the aerylate pathway excepted. The degradation of carbohydrates to volatile fatty acids and fermentation gases can be represented stoichiometrically a s : -0.5aC 6 H 12 0 +aH 2 0 0.5bC^H 10 0,+2b [H] l 6 126 •* c C,H 10 0, 6 126 A -u.i/ TTTT•2a-b+2c™ 4a-2b+4c [HJ+ j >aC 2 H 4 0 2+aC0 2 +4a[H] *•bC-IL.0«+bH„0 362 2 •cC..Ho0„+2cCO.+4c [H1 UJ 4o2 2 2a-b+2c , _ . , 2a-b+2c „ CO^* T CH.+ ~A H~0 S*±?£ C 6 H 1 2 0 6 - * a „Ac + b HP + c HE J f S H20 + ^ ^ 0» 2 + ^ ^ C H , -15ATP/mol of hexose HAc : HP : HB Max. Min. 0.50 0.35 0.15 5.2 4.2 0.60 0.25 0.15 5.2 3.8 0.70 0.15 0.15 5.3 3.5 0.60 0.15 0.25 5.0 4.0 mole o f h e x o s e c o n v e r t e d t o v o l a t i l e f a t t y a c i d s i n various molar p r o p o r t i o n s in the Table 3. ATP-yield per rumen of d a i r y c o w s . Basedonthesestoichiometricrelationshipofdegradationof hexoseunitstovolatile fattyacidsintheproportions a, b andcforacetate,propionate andbutyraterespectively, ATPyieldspermoleofhexose fermentedcanbecalculated forvarious fermentationpatterns.Theresultsofsuchcalculations foranumberofcharacteristicVFAratiosinrumen fermentationofdairycowsareshownintable 3.Fromthe resultsitappearsthatrelatively smalldifferences inATP yieldperhexoseequivalent fermentedoccurifthefermentationpatternshiftsfromanacetatebasedfermentationto apropionateorbutyratebased fermentation.Themaindifferencesappearasaresultoftheinvolvementofphosphorylasesinthecleavageofglycosidicbondsandalsodepend onwhichofthetwopropionate generatingpathwaysisused. Ifdietscontainingonlyroughages andthereforeconsiderableamountsofstructuralcarbohydrates arefed,the proportionofacetateintherumenisusuallyhighandoften exceeds0.65.Propionateandbutyratearefoundinmuch smallerproportions ofbetween0.15 and0.20 orevenlower (seeChurch,1970). Ifontheotherhanddietscontaininglargequantities ofnon-structural carbohydrates arefedtheproportionof propionatemayriseconsiderably.Particularly extrudedor steam-flaked grainsinthedietmay causeveryhighproportionsofpropionate (upto0.40 orevenhigher).Duringthe changeoverofadietrichinstructural carbohydrates toa dietrich innon-structural carbohydrates temporarilyhigh proportions (upto0.25) ofbutyratemayoccur (VanVuuren, -16personalcommunication).Alsohigh levelsoflacticacidare possibleanditisbelieved thatpropionate formationvia theacrylatepathwaybecomes important.Thissuggeststhat feedingexcessive amountsofconcentrates todairy cowsmay reduce theATP-yieldperhexoseequivalent fermented inthe rumen. Dietscontaining largeamountsoffreesugarsarenot often fed.Exceptionsmaybedietscontaining largequantitiesofsugar-beets,sugar-beetpulp,sugar-cane,molasses orfreshyounggrassinspring.Ifsuchdietsarefedhigh proportionsofbutyrateandpropionatemaybetheresultas wasfoundifdietscontaininglargeamountsofsugar-beets (KaufmannandRohr,1966),sugar-beetpulp (BathandRook, 1965),molasses (MartyandPreston,1970)andtoalesserextentperennialryegrassandItalianryegrasswhilegrazing (BathandRook,1965)werefed. Itshouldberealised thathighratesoffermentation resultinhighacidproduction rates,causingadecreasein ruminaipHwhichmay alsoaffectmicrobialgrowth. 5.Eff içiency_of _utilisation_of _çarbohydrates_as_an_enerçfY tion Indiscussingtheprinciplesofmicrobialgrowthitwas statedthattheenergeticefficiency ofmicrobialgrowthdependsonthegrowthrate.Oneofthefactorsdetermining growthrateistherateofATP-generation inthedegradation ofcarbohydrates.Thisseemstoplacenon-structuralcarbohydrates inafavourablepositionbecauseoftheir fastdegradation rateintheforestomachs (Johnson,1976). Fromthefermentationpatternsdiscussedearlieritbecameevidentthatexcessiveamountsofnon-structuralcarbohydratesare lessefficientingeneratingATP,thusnullifying toacertainextenttheadvantageofthehigh rateofdegradation. Besides thesupplyofsubstrate inruminant feedingis oftendiscontinuous.Forinstance,duringtheindoorperiod thesupplyofsubstrate isusually restricted totwicedaily, particularly fornon-structural carbohydrates.Asaconsequence therateofmicrobialgrowth isoftendiscontinuous. -17Shortlyaftertheintakeoflargeamountsofnon-structural carbohydratesby thehostanimalthemicrobialpopulation intherumenwillstartgrowingataveryhigh rate.This phaseof (exponential)growth,sometimesprecededbyashort lagphase,isfollowedbyaperiodofmaximumstationary growth,butpassessoonintoaso-called "deathphase". Duringthislatterperiod,inbetween themaximumgrowth rateandthesupplyofnewsubstrate,energy (ATP)becomes limiting,possiblyeven formaintenance ofthemicrobialpopulation.Themicrobialpopulation starts "consumingitself", micro-organisms die,disintegrate andaredegraded.Theresulting (smallamountsof)ATPcanbeusedtomeetthe maintenance requirementofthesurvivingpartofthepopulation.Thefinalsizeofthelatterdependsonthelength ofthedeathphase i.e.thetimebetweenmaximumgrowthand thenextfeeding.Theresultisadecrease inthenetproductionofbiomassandalowerenergeticefficiency. Ifthesupplyofnon-structural carbohydrates isabundant,significantquantitiesofmonomersaretakenupbythe micro-organisms andstoredaspolysaccharides.Inboth bacteriaandprotozoavaluesofupto35%ofpolysaccharides inthedrymatterwere reported (McAllanandSmith,1974; Czerkawski,1976). Iftheenergeticefficiencyofmicrobial proteinproduction isconsidered,asisoftendoneinruminantnutrition,anyvariationinthesynthesisofcompounds otherthanproteinwillaffectitsapparentenergetic efficiency.Thisisillustrated intable5wherethetheoreticenergeticefficiencyofmicrobialproteinsynthesisis compared formicrobialmasswithdifferentchemicalcomposition. Fromtable 4itbecomesevidentthatafterfeeding dietsrichinnon-structural carbohydrates themicrobial proteinproductionmayseemlessefficientbecausepartof theenergyisrequired forthesynthesisofcompoundsother thanproteins. Changing thefeedingpatternbymore frequentfeeding, particularly ofthenon-structural carbohydrates containing partofthediet,willrestricttheamountofsubstrate available atonetimeandwilltherefore restrictthemaximum -18sizeofthemicrobialpopulation.Itwillalsorestrictthe deathperiodandthusdecrease therecyclingofmicrobial mass.Thiswouldenable amoreefficientmicrobialgrowth ATP/100 g 1 ' macromolecule % i n IM ATP %i n EM ATP N x 6.25 4.5 35 1.58 65 2.93 carbohydrates 1.2 35 0.42 5 residue 0.1 30 0.03 30 0.06 0.03 t o t a l ATP 2.03 3.02 . t o t a l ATP/100g ;N x 6. 25 5.80(125) 4.65 (100) 1) E s t i m a t e d from H e s p e l l a n d B r y a n t , 1979. Table 4. T o t a l ATP r e q u i r e d f o r t h e s y n t h e s i s of p r o t e i n i n m i c r o b i a l mass o f d i f f e r i n g 100 g c r u d e chemical composition. andmicrobialproteinproduction.Insheepthiscouldbeconfirmedinvivowhentheanimalswere fedadietconsistingof grassnutsandmixturesofbarley andsucrose.Feedingthese dietsat2hourly intervals increased theenergeticefficiency ofmicrobialproteinproduction from 3.0 gmicrobialprotein/ MJofenergytrulydigestedintheforestomachs in4.6a/MJ (AlAttaretal., 1976). Inarecentexperiment inourinstitute 3dairycows were fedtheconcentrate partofthedietin6portionsper dayratherthantwicedaily.Theanimalswere feddietsconsistingoflonghay (25%ofthedrymatter)and concentrates (75%ofthedrymatter)largely (animalno.3)orentirely (animalsno.1and2)consistingofflakedmaize.Crudeprotein contentofthedietwas 10.8%inthedrymatter fortheanimals 1and2and 13.5%inthedrymatter foranimal3. Frequent feedingalsoincreased the flowofNinthesmall intestine asisshownintable5.Thedifference inN-flow was thoughttobetheresultofadifference inmicrobial proteinproduction. Feeding dietsmainlybasedonlongroughageswillresult inamore continuous degradation ofthecarbohydrates,be- •19causestructural carbohydrates formamajorpart.Comparing theenergeticefficiency ofmicrobialproteinproductionin 1 2 3 92.2 95.8 230.9 Treatment A Intake (gN/day) Duodenal N (% i n t a k e ) B Table 5. 133 133 Intake (gN/day) 96.0 113 89.1 Mean 126 229.1 Duodenal N (% of i n t a k e ) 157 179 148 161 Duodenal N (Ratio B/A) 1.18 1.35 1.31 1.28 The e f f e c t centrate (tr^atm^nt- on part V.) duodenal N-flow of the diet in of f e e d i n g t h e con6 t i m e s p e r day n n m n a r f >d t o 2 t i IDAS n e i r d a v fl-TPaf- mentA)indairy cows. animalsfedroughagedietswithdietsmainlybasedonconcentratesshowedamuchbetterefficiencywith roughagediets (McMenimanetal.,1976).Feeding theroughagedietsresulted + m 3.3-0.1gofmicrobialNsynthesizedper 100gOMtruly fermented intherumen;afterfeedingconcentrates thisfigure wasonly2.2-0.2g.Sincetheconcentratepartofthelatter diets consistedofmaizeorbarley thepossibility ofNbeing limiting formaximummicrobialgrowth canhowevernotentirely beexcluded. Onlyalimitednumberofexperiments inwhich theeffect ofthedietary carbohydrate sourceuponmicrobialprotein productionwasstudied,were reported inliterature. Inacontinuous culturesystemwhichwas supplemented with 3substrates differing innon-structuralcarbohydratecontenttheeffectonmicrobialproteinproductionwasstudied (Sternet al., 1978). Increasing therationon-structuralcarbohydrates tostructuralcarbohydrates increased theamountof microbialNproducedper 100gofdrymatter fermented (table6) •20Non-structural carbohydrates (%/DM) M i c r o b i a l N (g/100gDM as%ofthe fermented) highestvalue 49 3.12 100 33 2.80 90 20 2.40 77 Table6.Effectofcarbohydratesonruminaimicrobialprotein synthesis (Sternetal., 1978). Inanotherexperimentsheepwere fedat2-hourlyintervalsaproteinrichbasaldiet (soybeenmeal+driedgrass) whichwassupplementedwithwheatstarch,paperoramixture ofboth (Offeretal., 1978).Theproductionofmicrobial aminoacidswashighestifthebasaldietwas supplemented with themixture (table7). Maindietary carbohydrate source M i c r o b i a l N (g/MJ) as%ofthe fermented highestvalue none 7.6 53 starch 6.3 44 paper 5.5 42 14.4 100 starch+paper Table 7.Effectofcarbohydrates onruminaimicrobialprotein synthesis (Offeretal., 1978). Only fewdataareavailable ontheeffectofthepresence offreesugars inthedietontheefficiency ofmicrobialproteinproduction.When thebarley (315g/day) intheexperiments ofAlAttaretal., (1976)wasentirely replacedby sucrose (228g/day), theefficiency ofmicrobialprotein •21production was severely reduced,bothwith feeding once daily andwith feeding every 2hours. Ifonly part of the barley was replaced no such effectwas found (table8 ) . Dietary supplement Barley Sucrose M i c r o b i a l N (g/MJ as %of the fermented) highest value 315 210 0 76 4.60 100 4.25 92 105 152 4.55 99 0 228 1.90 41 Table 8.Effect of free sugars on ruminai microbial protein synthesis (AlAttar et al., 1976). Diets inwhich themain carbohydrate sourcewas ground barley straw, ground barley ormolasses were fed once daily to sheep (Oldham et al., 1977). The highest ratio between duodenal N-flow andN intake was found after feeding the barley straw containing diet and particularly after feeding the molasses containing diet this ratiowas severely reduced (table 9). Main dietary carbohydrate source Duodenal-N N-ingested as %of the highest value straw 0. 92 100 barley 0 82 0. 69 89 molasses 75 Table 9.Effect of carbohydrates on the duodenal N flow in sheep (Oldham et al., 1977). If the carbohydrate source has an influence on the efficiency ofmicrobial protein production,the ratio between structural and non-structural carbohydrates fermented in the forestomachsbecomes of interest.For this the ratio between crude fibre andN free extracts may be used. In our research -22withdairy cowsequippedwith re-entrant cannulae inthesmall intestine arangeofdietswithdifferentratiosbetweenlong roughage andgroundandpelleted concentrateswere fed.This resulted inaratiobetween crude fibreandNfEfermentedin the forestomachs ranging from0.15 to0.70.Theefficiency ofmicrobialprotein synthesis (expressedasmicrobialNper 100gofCF+NfEfermented intheforestomachs andbasedon DAPA asamicrobialmarker)wasrelatedtothisratioandthe resultsareshowninfigure3. CF,S^DNfE,S Figure 3.Relationbetween theefficiency ofmicrobialN synthesis (gmicr.N/100 gcarbohydrates fermented inthestomachs)andtheratiobetweenstructural andnon-structural carbohydrates fermented inthe stomachs ( D ^s / D N f E >g ). -23Theefficiencyofmicrobialproteinproduction showsa widevariation,which isnotsurprising taking intoaccount allpossible factorswhichmayaffectthisefficiency.Ifthe resultsarelookedatcarefully thereseemstobeanoptimum ratiobetweencrudefibreandNfEfermented intheforestomachs ofapproximately 0.3whichenablesmaximumefficiencyof microbialproteinproduction.Athigher ratiostherateof degradation andhencetherateofenergy (ATP)supplymaybecome limiting forthemicrobialgrowthrate;atlowerratios thepHintherumenortheproductionofpropionateviathe acrylatepathwayortheproductionoflactatemay reducethe rateofATP-generation andtherefore therateofgrowth.The storageofpolysaccharides insidethemicrobialcellsmayalso have aninfluence. Asaresultofdifferent fermentationpatterns theATP yieldofthedegradationofdifferentcarbohydratesmaydiffer. Excessive amountsofnon-structural carbohydrates orfree sugarsareexpected toreducetheATP-yield. TheefficiencyofutilisationofATPformicrobialproteinproductionmaydifferwithdifferent carbohydrate sources.Thismaybecausedbydifferencesinthecomposition ofmicrobialmasssynthesized,ingrowth rateand intheextent ofrecyclingofmicrobialmass. Forachievingamaximummicrobialproteinproductionan optimumratiobetweendietary structuralandnon-structural carbohydrates seemstoexist,butthevalueofthisratiois notyetclearlyestablished. -24- Sumraary Proteinsupplyinruminants dependsondietaryprotein escapingmicrobial degradation intheforestomachsandon microbialproteinsynthesized therein.Thislatterresults frommicrobialgrowthwhich requiresasubstrate fromwhich energy (ATP)andprecursors canbeextracted. Energy formicrobialgrowthmainly results fromthe conversionofcarbohydrates intovolatile fattyacids (VFA), fermentation gasesandwater.Thisconversiondiffersbetween structural andnon-structural carbohydrates.Totaldigestion ofstructuralcarbohydrates (cellulose,hemicellulose)is usually lowerthanofnon-structural carbohydrates (starch, fructosans),butalargerproportion isdigested intheforestomachs.Therateofdegradationofnon-structuralcarbohydrates usuallyexceeds thatofstructuralcarbohydrates. ThisresultsinahigherrateofATPgenerationandofthe formationof "reduction-equivalents".Topreventaccumulation ofreductionequivalents thefermentationpatternisdiverted frommainly acetatetomorepropionate and/orlactate.This shiftoften results inadecrease inpHandadecreasein ATPgeneratedper 100gofcarbohydrates fermented. Theenergeticefficiencyofmicrobialproteinproduction isinfluencedbymicrobialgrov/thrate,theextentofrecyclingandthecompositionofmicrobialgrowth. Thegrowth rate largely dependsontherateofATP generation fromthedegradationofcarbohydrates.Non-structuralcarbohydrateshaveanadvantagehere.Theirfastrate ofdegradationmayhowever initially resultinanexcessive growthratebutlateronindyingoffofpartofthepopulationbecause ofashortageofATP,resulting inadecrease ofnetgrowth.Thisrecyclinglowerstheenergeticefficiency ofmicrobialproteinproduction.Thisdisadvantage canbeovercomebysupplyingnon-structural carbohydrates insmaller quantitieswith shorterintervals. Structural carbohydrates givealowerrateofATPgeneration,resulting inalowerefficiency ofgrowth,because a largerproportionoftheenergy isrequired formaintenance. Thisslowbutcontinuous releasenotonlypreventsexcessive •25- growth,butalso thedyingoffofpartofthemicrobialpopulation.The finalefficiency ofmicrobialgrowthisthe.reforeoftenashighorevenhigherasafterthesupplyof non-structuralcarbohydrates. Thecompositionofmicrobialgrowthvariesparticularly withrespecttoproteinandcarbohydrate content.Substantial amountsofcarbohydratesmaybe (temporarily) storedinside microbial cells,particularly ifthesupplyofnon-structural carbohydrates ishigh.Theenergy required forthisstorage isnotavailable forproteinproduction andtheenergetic efficiency ofthe latterapparentlydecreases. Fromexperimentswithanimalsitappearsthatfeeding concentratesmore frequently insmallerquantitieshasa positive effectontheamountofmicrobialproteinsynthesizedper 100gorganicmatter fermented inthe forestomachs. Large,amountsoffreesugarsappeartohaveanegativeinfluenceonthemicrobialprotein synthesis.Between structural andnon-structural carbohydrates anoptimalratioseemsto existatwhich themicrobialproteinproduction intheforestomachs reachesamaximumefficiencybutthisoptimum couldnotyetaccuratelybedetermined. §§•!?§DY §£ting Herkauwers zijnvoorhuneiwitvoorziening afhankelijk vantweeeiwitbronnent.w.voereiwitdatniet-afgebrokende voormagen passeertenmicrobieeleiwitdatindiezelfdevoormagenwordtgesynthetiseerd.Ditlaatste isafhankelijkvan microbiëlegroeiindevoormagen,waarvanhetwezen inhet onderhavige artikelwordtuiteengezetmetspecialeaandacht voorderelatiemetdeverschillendekoolhydraten inhet rantsoen. Microbiële groeihangtvooralsamenmetdebeschikbaarheidvaneensubstraatwaaruitenergie (ATP)enbouwstenen kunnenwordenverkregen.Energievoormicrobiële groeikomt voornamelijk beschikbaar uitdeomzettingvankoolhydraten invluchtigevetzuren (V.FA),fermentatiegassen enwater.De hoeveelheid diewordtafgebroken isafhankelijk vandeaard •26- van dekoolhydraten (structurele en niet-structurele koolhydraten).De totale vertering van structurele koolhydraten (cellulose,hemicellulose) is doorgaans lager dan die van niet-structurele (zetmeel,fructosanen, vrije suikers), maar een groter deel van de vertering vindt plaats in de voormagen. De afbraak van niet-structurele koolhydraten in de voormagen verloopt doorgaans sneller dan die van structurele koolhydraten. Deze snelle afbraak resulteert niet alleen in een snelbeschikbaar komen van veelATP,maar ook van veel "reductie-equivalenten". Hetwegwerken van de laatsten verschuift de verhouding waarin vluchtige vetzuren v/ordengevormd van veelazijnzuurnaar meer propionzuur en/of melkzuur. Deze verschuiving gaatmeestal enerzijds gepaard met een verlaging van depH en anderzijds meteen verlaging van dehoeveelheid ATPwelke per 100 g afgebroken koolhydraten wordt gevormd. De energetische efficiëntie1van microbiële eiwitproductie hangt samen met de groeisnelheid, demate van recycling en de samenstelling van de microbiële groei. De groeisnelheid hangt sterk afvan de snelheidv/aarmee ATP uit de afbraak van koolhydraten kanv/ordenvrijgemaakt. In dit opzicht zijn niet-structurele koolhydraten in het voordeel. De afbraak ervan verloopt echter vaak zo snel, dat naeen aanvankelijke stormachtige groei er een tekort optreedt aan substraat en daarmee aanATP. De beschikbaar komende ATP is geheel nodig voor onderhoud en resulteert nietmeer ingroei.Vaak vindt zelfs afsterling van een deel der micro-organismen plaats,waardoor reeds geproduceerd eiwitweerwordt vernietigd en de netto eiwitproduktie afneemt. Deze "recycling" verlaagt de energetische efficiëntie van microbiële eiwitproductie. Hetmetkorte tussenpozen verstrekken vankleine hoeveelheden niet-structurele koolhydraten lijkt deze nadelen grotendeels tekunnen opheffen. Wanneer structurele koolhydraten als substre.atbeschikbaar zijn is de toevoer van ATP langzamer, resulterend in een langzamer microbiële groei met een groter aandeel van de energie nodig voor onderhoud. De geleidelijkheid van het vrijkomen vanATP voorkomt echter een explosieve groei -27- en.daarmeeookhetdaarnaafstervenvaneendeel.vande micro-organismen,waardoor deuiteindelijkegroeieneiwitproductieminstens zoefficient zijnalsbijnietstructurele koolhydraten. Desamenstellingvandemicrobiëlegroeikanvariëren, vooralwathetgehalteaaneiwitenkoolhydratenbetreft. Koolhydratenkunnen (tijdelijk)inaanzienlijke hoeveelheden inmicrobiële cellenwordenopgeslagen,vooralnahetverstrekkenvanveelniet-structurelekoolhydraten.Dehiervoor nodigeenergie (ATP)isnietmeerbeschikbaarvoormicrobiële eiwitsynthese endeenergetischeefficiëntievandelaatste neemtschijnbaaraf. Uitdierproevenblijktdatvakervoerenvanvooral krachtvoereengunstigeffectheeftopdehoeveelheidmicrobieeleiwitdieper 100gindevoormagenafgebrokenorganische stofwordtgeproduceerd.Deaanwezigheid vanveel vrije suikersdaarentegenheefthieropeennegatieve invloed. Er lijkteenoptimaleverhouding tussenstructureleennietstructurelekoolhydraten tebestaan,waarbijdeefficiëntie waarmeeindevoormagenmicrobiëeleiwitwordtgevormd,maximaalis,maareen.nauwkeurige vaststellingvanditoptimumis totnutoenietmogelijkgebleken. •28- Literature 1.AlAttar,A., R.A. Evans and R.F.E.Axford, 1976 The effect of frequency of feeding and of dietary energy source upon microbial protein synthesis in the rumen of sheep Proc. Nutr. Soc. 35:109A 2.Armstrong, D.G., 1976 Proteinverdauung und -absorption beiMonogastriden und Wiederkäuern. Ubers. Tierernährng. 4:1-24 3.Bath,I.H.and J.A.F. Rook, 1965 The evaluation of cattle foods and diets in terms of the ruminai concentrations of volatile fatty acids J. Agric. Sei. (Camb.), 64:67-75 4.Bauchop,T. and S.R. Eisden, 1960 The growth ofmicro-organisms in relation to their energy supply J. Gen.Microbiol. 23:457-469 5.Chalupa,W., 1978 Digestion and absorption of nitrogenous compounds in ruminants Page 211-230 in Proc. 3rdWrld Conf. onAn.Feeding,Madrid 6. Clark,J.H., 1975 Nitrogen metabolism in ruminants:protein solubility and rumen bypass ofprotein and amino acids Page 261 inM.Friedman (ed.), Protein nutritional quality of foods and feeds,vol.1,part II Marcel Dekker,New York 7.Cheng,K.J., D.E.Akin and J.W. Costerton, 1978 Rumen bacteria: interaction with particulate dietary components and response to dietary variation Fed. Proc. 36:193-197 8.Church,D.C., 1970 Digestive Physiology and Nutrition of Ruminants O.S.U. Book Stores,Corvallis,Oregon 9. Czerkawski,J.W., 1976 Chemical composition ofmicrobial mass in the rumen J. Sei. Fd.A g r i c , 27:621-632 10. D e m e i j e r , D . I . , 1 9 7 6 Een kwantitatieve studie vanhet metabolisme van pensmaaginhoud Thesis State University Ghent,Belgium 11. Egan,A.R., D.J. Walker,C.J. Nader and G. Storer, 1975 Comparative aspects of digestion of four roughages by sheep Aust. J. Agric. Res.,26:909-922 -2912. Es,A.J.H,van and S. Tamminga, 197S Utilisation of nutrients for net protein synthesis Page 171-132 in Proc. 3rdWrld Conf.onAn.Feeding,Madrid 13. Hespell,R.B. andM.P.Bryant, 1979 Efficiency of rumen microbial growth; Influence of some theoretical andexperimental factors on ï._ p J. An. Sei. (inpress) 14. Hogan,J.P. and R.H. Weston, 1970 Quantitative aspects ofmicrobial protein synthesis in the rumen Page 474 inA.T.Phillipson (ed.), Physiology of digestion and metabolism in the ruminant Oriel Press,Newcastle upon Tyne 15. Huhgate, R.E., 1966 The rumen and its microbes Academic Press,New York 16. Johnson,R.R., 1976 Influence of carbohydrate solubility on NPN utilisation in the ruminant J. An. Sei., 43:184-191 17. Kaufmann,W., 1977 Economic and other considerations governing decisions on the advisability of incorporating additional and new sources ofprotein and NPN into the diet ofbeef cattle Page 101 in,Protein and non protein nitrogen for Ruminants Pergamon Press,Oxford 18. Kaufmann,W. andK. Rohr, 1966 Ergebnisse gaschromatografischerBestimmung der flüchtigen Fettsäuren im Pansen bei unterschiedlicher Fütterung Z.Tierernärng,Tierphysiol. u.Futtermittelkde. 22tilg.Klooster,A.Th. van't and B.D.E. Gaillard, 1976 Digestion of carbohydrates in the intestines of dairy cows Misc. Papers Landbouwhogeschool 12:79-94 20. Marty, R.J. and T.R. Preston, 1970 Molar proportions of the short chain fatty acids (VFA) produced in the rumen of cattle given high molasses diets Rev. cubana Cienc. agric. 4:183-186 21. McAllan,A.B.and R.H. Smith, 1974 Carbohydrate metabolism in the ruminant.Bacterial carbohydrates formed in the rumen and their contribution to digesta entering the duodenum Br. J. Nutr. 31:77-88 22. McMeniman,N.P.,D. Ben Ghedalia and D.G. Armstrong, 1976 Nitrogen-energy interactions in rumen fermentation Page 217 inK.N. Boorman et al., (eds.), Protein metabolism and nutrition Butterworth, London •30- 23. Hertens,D.R., 1977 Dietary fibre components: relationship to the rate and extent of ruminant digestion Fed. Proc. 36:187-192 24. Offer,N.W., R.F.E.Axford and R.A. Evans,1978 The effect of dietary energy source on nitrogen metabolism in the rumen of sheep Br. J. Nutr. 40:35-44 25. Oldham, J.D., P.J. Buttery,H. Swan and D. Lewis, 1977 Interactions between dietary carbohydrates and nitrogen and digestion in sheep J. Agric. Sei. (Camb.), 89:467-479 26. Prins,R., 1977 Biochemical activities of gut micro-organisms Page 73 inR.T.J. Clarke and T. Bauchop (eds.), Microbial ecology of the gut Academic Press,London 27 Reddy,C.A. and H.D. Peck, 1978 Electron transport phosphorylation coupled to fumarate reduction by H - andMg2+ - dependant adenosine triphosphatase activity inextracts of the rumen anaërobe Vibrio succinogenes J. Bacteriol., 134:982-991 28. Stern,M.D.,H. Hoover,C.J. Sniffen, B.A. Crooker and P.H. Knowlton, 1978 Effects ofnon-structural carbohydrates,urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. J. An. Sei., 47:944-956 29. Stouthamer,A.H., 1973 A theoretical study of the amount ofATP required for synthesis ofmicrobial cell material Antonie van Leeuwenhoek, 39:545-565 30. Stouthamer,A.H., 1976 Yield studies in micro-organisms Meadowfield Press Ltd., Durham .31. Stouthamer,A.H. and C. Bettenhaussen, 1973 Utilisation ofenergy for growth andmaintenance incontinuous andbatch cultures of micro-organisms Biochira.Biophys. Acta 301:53-70 32. Tamminga, S., 1978 Measurement of microbial protein synthesis in the rumen Page 5.1 inD.F. Osbourn, D.E. Beever and D.J. Thomson (eds.), Ruminant digestion and feed evaluation Agricultural Research Council,London 33. Tamminga,S.',1979 Protein degradation in the forestomachs of ruminants J. An. Sei., (inpress) —o.1.— 34. Thauer,K., K. Jungermann and K, Decker, 1977 Energy conservation in chemotrophic anaerobic bacteria Bact.'Rev. 41:100-130 35. Ulyatt,M.J., D.W. Dellow, C.S. Reid and T. Bauchop, 1975 Structure and function of the large intestine of ruminants Page 119 in Ï.W.McDonald and A.C.I. Warner (eds.), Digestion and metabolism in the ruminant 36.Waldo,D.R.,L.W. Smith and E.L.Cox, 1972 Model of cellulose disappearance from the rumen J. Dairy Sei., 55:125-129 37. Waldo,D.R., 1973 Extent and partition of cereal grain starch digestion in ruminants J. An. Sei., 37:1062-1074
© Copyright 2026 Paperzz