Solution of 3 × 3 systems when three
eigenvalues are equal and there exists unique
eigenvector
1. Solve the difference system:
xn+1 =
xn + 2yn + zn
yn+1 = −xn + 3yn + zn
zn+1 =
yn + 2zn
(1)
2. Solve the differential system:
x0 =
x + 2y + z
0
y = −x + 3y + z
z0 =
y + 2z
Solution.
1 2
A = −1 3
0 1
Characteristic
(2)
1
1
2
equation:
1−λ
2
1
2
3
3−λ
1
det (A − λI) = det
−1
= 8 − 12λ + 6λ − λ =
0
1
2−λ
3
− (λ − 2) = 0
λ1 = λ2 = λ3 = 2, or λ = 3 with multiplicity 3.
1.Eigenvector:
1
Av1 =λv1⇔ (A − λI) v1 = 0;
x
v1 = y ,
z
1−λ
2
1
x
0
3−λ
1
−1
y = 0
0
1
2−λ
z
0
λ
=
2
:
−1 2 1
x
−x + 2y + z
−1 1 1 y = −x + y + z
0 1 0
z
y
0
= 0
0
−x + 2y + z = 0
−x + y + z = 0
y = 0
, Solution is : {y =0, x= z,z =
z}
x
z
1
1
v1 = y = 0 = 0 z ⇒ v1 = 0
z
z
1
1
2. The first generalized eigenvector:
Av2 =λv2+ v1 , ⇔ (A − λI) v2 = v1 ;
x
v2 = y
z
1−λ
2
1
x
1
3−λ
1
−1
y = 0
0
1
2−λ
z
1
λ=2:
−1 2 1
x
−x + 2y + z
1
−1 1 1 y = −x + y + z = 0
0 1 0
z
y
1
−x + 2y + z = 1
−x + y + z = 0
y = 1
, Solution is : {y = 1, z = z, x = 1 + z}
2
x
1+z
1
1
1
v2 = y = 1
= 1 + 0 z ⇒ v2 = 1
z
z
0
1
0
3. The second generalized eigenvector:
Av3 =λv3+ v2 , ⇔ (A − λI) v3 = v2 ;
x
v3 = y
z
1−λ
2
1
x
1
3−λ
1
−1
y = 1
0
1
2−λ
z
0
λ=2:
−1 2 1
x
−x + 2y + z
1
−1 1 1 y = −x + y + z = 1
0 1 0
z
y
0
−x + 2y + z = 1
−x + y + z = 1
y = 0
, Solution is : {y =0, z = z, x= z− 1}
x
−1 + z
−1
1
−1
v2 =
y = 0
= 0 + 0 z ⇒ v3 = 0
z
z
0
1
0
4.General solution of difference system (1).
Transition Matrix:
T = (v1 , v2 , v3 ) ;
Av1 = λv1 , Av2 = λv2 + v1 , Av3 = λv3 + v2
AT= A (v1 , v2, v3 ) = (Av1 , Av2 , Av3 ) = (λv1 , λv2 + v1 , λv3 + v2 ) =
λ 1 0
= 0 λ 1 (v1 , v2 , v3 ) = ∆T,
0 0 λ
λ 1 0
where ∆ = 0 λ 1 .
0 0 λ
3
We have
∆2
∆3
∆n
2
3
n
λ2 2λ 1
λ 1 0
2
2λ
=
0 λ 1 = 0 λ
2
0 0 λ
0 0 λ
λ 1 0
= 0 λ 1
0 0 λ
...
λ 1 0
= 0 λ 1
0 0 λ
λ3 3λ2 3λ
λ3 3λ2
= 0
0
0
λ3
λn nλn−1
= 0
λn
0
0
n(n−1) n−2
λ
2!
n−1
nλ
λn
x0
C1
−1
Let (v1 , v2 , v3 ) y0 = C2
z0
C3
n
n−2
λ nλn−1 n(n−1)
λ
2!
−1
An = T ∆n T −1 = (v1 , v2 , v3 ) 0
λn
nλn−1 (v1 , v2 , v3 )
0
0
λn
n
x0
x0
λ nλn−1 n(n−1)
λn−2
2!
−1
An w0 = An
y0 = (v1 , v2 , v3 ) 0
λn
nλn−1 (v1 , v2 , v3 ) y0 =
z0
z0
0
0
λn
C1
³
³
´
´
n(n−1) n−2
n
n−1
n
n−1
n
= v1 λ , v1 nλ
+ v2 λ , v1 2! λ
+ v2 nλ
+ v3 λ C2
=
C
3
³
´
³
´
n(n−1) n−2
n
n−1
n
n−1
= C1 v1 λ + C2 v1 nλ
+ v2 λ + C3 v1 2! λ
+ v2 nλ
+ v3 λ n
Here
ωn
xn
= yn =
zn
1
1
1
n
n−1
n
= c1 0 2 + c2 0 n2
+ 1
2 +
1
1
0
1
1
−1
n (n − 1) n−2
n
n−1
+c3
2
+ 1
+
0
n2
0 2
2!
1
0
0
4
Answer:
³
n
n−1
xn = c1 2 + c2 n2
+2
n
´
Ã
+ c3
n (n − 1) n−2
2
+ n2n−1 − 2n
2!
!
yn = c2 2n + c3 n2n−1
zn = c1 2n + c2 n2n−1 + c3
n (n − 1) n−2
2
2!
5. Solution of differential
system
(2).
x0
C1
Again, let (v1 , v2 , v3 )−1
y0 = C2 ,
z0
C3
At
e
=
∞
P
n=0
n
An tn!
=
∞
P
n=0
n
An tn!
=
∞
P
T∆
n
n
T −1 tn!
n=0
n−1 n(n−1) n−2
nλ
λ
2!
n
n−1
n
∞ λ
P
= (v1 , v2 , v3 )
0
n=0
0
∞
P n tn
n=0 λ n!
0
= (v1 , v2 , v3 )
λ
0
eλt teλt
= (v1 , v2 , v3 ) 0 eλt
0
0
nλ
λn
∞
P
n
nλn−1 tn!
n=0
∞
P
n
λn tn!
n=0
0
0
t2
=T
µ∞
P
n=0
n
∆n tn!
2!
n!
n
nλn−1 tn!
n=0
∞
P
n
λn tn!
n=0
C1
eλt
λt C =
te 2
C3
eλt
2!
C1
t2
λt
λt
λt
= v1 e , (v1 t + v2 ) e , v1 2! + v2 t + v3 e C2 =
C3
´
³ 2
t
λt
λt
C1 v1 e + C2 (v1 t + v2 ) + C3 v1 2! + v2 t + v3 e .
Here
³
³
´
x (t)
y (t) =
z (t)
5
´
T −1 =
tn
−1
n! (v1 , v2 , v3 ) =
∞
P
n(n−1) n−2 tn
λ
n=0
∞
P
¶
(v1 , v2 , v3 )−1 =
1
1
1
λt
λt
= C1 0 e + C2 0 t + 1
e +
1
1
0
1
−1
1
2
λt
t
+C3 0 + 1 t + 0
e .
2!
0
0
1
6. Answer:
Ã
2t
2t
x (t) = C1 e + C2 (t + 1) e + C3
y (t) = C2 e2t + C3 te2t
z (t) = C1 e2t + C2 te2t + C3
6
t2 2t
e
2!
!
t2
+ t − 1 e2t
2!
© Copyright 2026 Paperzz