Satellite Thermal Control Engineering prepared for “SME 2004" OLYMPUS HIPPARCOS MSG ULYSSES SOHO ERS ENVISAT CASSINI L1 HUYGENS ECS ARIANE ISS SPACELAB ISO ARTEMIS GIOTTO [email protected] European Space Agency, Estec, Thermal and Structure Division Keplerlaan 1, PO Box 299, 2200AG Noordwijk, The Netherlands Tel25jun04, +31 715654554, Fax +31 715656142 SME04, [email protected] 1 of 66 ESTEC Thermal & Structure Division Satellite Thermal Control Engineering What you will learn? 1. heat transfer basics 3. role – conduction – why thermal control required? – radiation – importance of thermo-optical properties 4. design – what is thermal design? – which types of S/C design exist? 2. satellite energy balance – from ground to space – simple satellite thermal behaviour 5. means SME04, 25jun04, [email protected] – what to control the flux/temperatures 2 of 66 ESTEC Thermal & Structure Division 1. Heat Transfer Basics ROSETTA* FM in LSS, dec01 Thermal Control Engineering 1. heat transfer basics 2. satellite energy balance 3. role 4. design 5. means *without Solar Panels SME04, 25jun04, [email protected] 3 of 66 ESTEC Thermal & Structure Division 1.1 Satellite Heat Transfer Modes ROSETTA* FM in LSS, dec01 1. Heat Transfer Basics 1.1 satellite heat transfer modes 1.2 conduction 1.3 radiation *without Solar Panels SME04, 25jun04, [email protected] 4 of 66 ESTEC Thermal & Structure Division 1.1 Satellite Heat Transfer Modes • Conduction – between any body – eventually by contact through an interface • Radiation – main mode of heat transfer in vacuum/space • Convection – manned tended satellites (ISS, shuttle, launchers, ascent…) • Ablation – combination of 3 and chemical reaction (re-entry vehicles) SME04, 25jun04, [email protected] 5 of 66 ESTEC Thermal & Structure Division 1.2 Conduction ROSETTA* FM in LSS, dec01 1. Heat Transfer Basics 1.1 satellite heat transfer modes 1.2 conduction 1.3 radiation *without Solar Panels SME04, 25jun04, [email protected] 6 of 66 ESTEC Thermal & Structure Division 1.2 Conduction • Definition – propagation of energy from particle to particle – in solid, liquid or gaseous continuous matter, homogeneous or not – without matter displacement r q r r q = − k ∇T • Fourier’s Law r – q – k r n T(x,y,z) is the heat flow rate vector (W/m2) is the material thermal conductivity (W/m2.K) – one-dimensional conduction Th T(x) k A Tc l SME04, 25jun04, [email protected] k A Q= (Th − Tc ) l 7 of 66 ESTEC Thermal & Structure Division 1.2 Conduction - Data Thermal Conductivity 1.E+03 Copper 1.E+02 Aluminium AA5083-T0 k (W/m.K) 1.E+01 304 ss G-10 // to warp 1.E+00 Ti Epoxy 1.E-01 PE // 1.E-02 Cu-Ni (70-30) Brass Cu-Zn (90-10) Mylar PET amorphous 1.E-03 1.E-04 1 10 100 1000 Temperature (K) SME04, 25jun04, [email protected] 8 of 66 ESTEC Thermal & Structure Division 1.3 Radiation ROSETTA* FM in LSS, dec01 1. Heat Transfer Basics 1.1 satellite heat transfer modes 1.2 conduction 1.3 radiation *without Solar Panels SME04, 25jun04, [email protected] 9 of 66 ESTEC Thermal & Structure Division 1.3 Radiation • Characteristics – propagation of electro-magnetic energy in straight line – between surfaces separated by • absorbing, scattering media • or in vacuum – hence without matter displacement – reflected, absorbed or transmitted on surrounding bodies • Source – thermal agitation of particles SME04, 25jun04, [email protected] 10 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Black Body • Black Body – is real or fictitious surface – that absorbs all incident radiant energy i.e. α (θ , λ ) = α = 1 • from every direction • at every wavelengths – isotropic emitter ε (θ , λ ) = ε = 1 • radiated energy depends only on temperature • Black Body Emitted Energy hemispherical spectral emissive power hemispherical total emissive power Planck’s Law Eλ ,T 2π h c2 = hc 5 kB λT λ e − 1 Stefan-Boltzmann’s Law ∞ (W/m2.µm) Ebb ,T = ∫ Eλ ,T dλ = σ T 4 SME04, 25jun04, [email protected] (W/m2) 0 11 of 66 ESTEC Thermal & Structure Division Radiation – Black Body Laws Planck and Stefan-Boltzmann Planck1.3 and Stefan-Boltzmann Laws 0.8 0.8 1.50 1.50 12 12µm µm 0.5 0.5µm µm 5776 5776KK 255 255KK 1.25 1.25 HemisphericalSpectral Spectral λ,Τ EEλ,Τ , ,Hemispherical EmissivePower Power(10 (1077W/m W/m22.µ.µm) m) Emissive HemisphericalSpectral Spectral λ,Τ EEλ,Τ , ,Hemispherical 14 2 14 W/m 2 .µm) Emissive Power (10 Emissive Power (10 W/m .µm) 1.0 1.0 1.00 1.00 0.6 0.6 0.75 0.75 0.4 0.4 0.2 0.2 SUN SUN EARTH EARTH 4 4 Area Area==σσTTSS 0.0 0.0 0.1 0.1 0.50 0.50 0.25 0.25 4 4 Area Area==σσTTEE 1.0 10.0 1.0 10.0 λ, λ,Wavelength Wavelength(µm) (µm) SME04, 25jun04, [email protected] 0.00 0.00 100.0 100.0 12 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Real Body • can absorb, reflect or transmit radiation energy Φλ incident ρd Φλ diffusely reflected - all parameters are wavelength and angular dependent ρs Φλ specularly reflected - general case: semi-transparent α (λ ) + ρ (λ ) + τ (λ ) = 1 ρ = ρs + ρd α Φλ absorbed τ Φλ transmitted - opaque hence SME04, 25jun04, [email protected] τ (λ ) = 0 α (λ ) + ρ (λ ) = 1 13 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Real Body • Surface Emissivity – ratio of surface radiated energy to that of a black body at the same T – always <1 for a real surface ∞ ε (θ , λ ) = ∫α Eλ ,T dλ λ ,T <1 0 ∞ ∫E λ ,T for a black body ε (θ , λ ) = ε = 1 dλ 0 – depends on direction θ and wavelength λ of emitted energy – therefore can be • directional (d) or hemispherical (h) • spectral (s) or total (t) • averaged over all directions, wavelengths or both SME04, 25jun04, [email protected] 14 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Real Body • Surface Absorptivity – ratio of surface absorbed energy to incident energy – always <1 for a real surface ∞ α (θ , λ ) = ∫α 0 Eλ ,T dλ λ ,T <1 ∞ ∫E λ ,T for a black body dλ α (θ , λ ) = α = 1 0 – depends on incident energy direction θ and wavelength λ – therefore can be • directional (d) or hemispherical (h) • spectral (s) or total (t) • averaged over all directions, wavelengths or both SME04, 25jun04, [email protected] 15 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Real Body • Absorptivity vs Emissivity – for a given direction θ and at any wavelength λ 2nd Kirchoff’s Law α (θ , λ ) = ε (θ , λ ) ∀θ , ∀λ – in general hemispherical total values are different α ≠ε because – α and ε have a strong wavelength dependence – source temperature of incident radiation (Sun at 5776 K) different than surface temperature (satellite –250 -> 300°C) SME04, 25jun04, [email protected] 16 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Real Body • Solar Absorptivity αS and Hemispherical Emissivity εH αS is the solar absorptivity αS = εS integrated over 0.2-2.8 µm ⇒ refers to UV wavelengths i.e. 95% solar spectrum εH is the hemispherical emissivity αH = εH integrated over 5-50 µm ⇒ refers to IR wavelengths i.e. body at –250/300°C but αS ≠ εH because the spectra are different SME04, 25jun04, [email protected] 17 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Data • Spectral Reflectance ρ – integration over solar (5776K) wavelengths • α s=0.20 – integration over infrared black body (300K) wavelengths • ε h=0.87 12 12µm µm 1.3 1.3 1.0 1.0 0.8 0.8 5776 K 5776 K 255 K 255 K Reflectance Reflectance 1.00 1.00 0.75 0.75 µµ 0.5 0.5 m m 0.50 0.50 0.5 0.5 0.25 0.25 0.3 0.3 0.0 0.0 0.1 0.1 1.0 1.0 10.0 10.0 ρ Spectral Reflectance (-) ρ, ,Spectral Reflectance (-) • Black Body Emittance 1.5 1.5 λ,Τ, Hemispherical Spectral EE λ,Τ, Hemispherical Spectral EmissivePower Power(10 (101414or or10 107 7W/m W/m2.2µ.µ m) Emissive m) – Zinc Oxide Potassium Silicate Coating MAP MAPPSG120-FD PSG120-FDReflectance Reflectance 0.00 0.00 100.0 100.0 λλ, ,Wavelength Wavelength(µ(µm) m) SME04, 25jun04, [email protected] 18 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Data • Typical Values Finish VD Au VDA black paint white paint SSM (Ag 2 mils) OSR αS 0.23 0.15 0.94 0.20 0.10 0.09 εH 0.03 0.05 0.81 0.88 0.60 0.82 SME04, 25jun04, [email protected] αS/εH 9.20 3.00 1.16 0.23 0.17 0.11 19 of 66 ESTEC Thermal & Structure Division 1.3 Radiation - Black Body • Radiated Energy between Black Bodies ( Qij = Ai Fij σ Ti 4 − T j4 ) with Fij, the view factor between surface i and surface j or ( Qij = Ai σ Ti 4 − T j4 when Ai Ti Qij Aj dAi Tj dAj ) Fij = 1 SME04, 25jun04, [email protected] 20 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance ROSETTA* FM in LSS, dec01 Thermal Control Engineering 1. heat transfer basics 2. satellite energy balance 3. role 4. design 5. means *without Solar Panels SME04, 25jun04, [email protected] 21 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance WHAT HAPPENS from GROUND to SPACE ? SME04, 25jun04, [email protected] 22 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Thermal Environment • Ultra-high Vacuum, 10-14 bar < p < 10-17 bar => no convection – temperature levels • Deep Space, @ 2.7 K RA MB U N PE – imbalance, temperature levels and gradients UMBRA • Solar Eclipse – SSO SPOT, ENVISAT 32 mn – GEO MSG 72 mn – HEO CLUSTER 5 h max RA MB U PEN 0°52’ SME04, 25jun04, [email protected] 23 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Thermal Environment intense Solar Flux, SC=1367 W/m2 @ 1 AU – imbalance, temperature levels and gradients Solar Intensity vs Sun Distance 1000000 Earth 10.0 10000 1000 1.0 Saturn 100 0.1 Mars 10 Jupiter 1 0.1 1 0.0 10 Sun Distance (AU) SME04, 25jun04, [email protected] Solar Intensity (SC) SC ΦS = 2 dS 100.0 Mercury 100000 Intensity (W/m2) • 24 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Thermal Environment σ TE 4 4 π R E 2 • Albedo Flux – reflected by Sun illuminated side of Planet – albedo = ratio of solar reflected energy to local solar flux – Earth albedo aE = 0.33 ± 0.13 equivalent to 410 W/m2 – aE varies with landscape clouds 0.4-0.8 forest 0.05-0.10 ocean 0.05 emitted (1 − a ) SC πRE 2 absorbed • Planet Flux – infrared energy radiated by the Planet – Earth=blackbody @255 K (-18 °C) equivalent to 240 W/m2 a SC π RE SC reflected incident SME04, 25jun04, [email protected] 25 of 66 ESTEC Thermal & Structure Division 2 Equilibrium Temperature of 2. Satellite Energy Balance Equilibrium Temperature of aa Sphere Sphere from from Ground Ground to to Space Space 100000.0 100000.0 Altitude(km) (km) Altitude 10000.0 10000.0 1000.0 1000.0 100.0 100.0 10.0 10.0 Black Black White White Gold Gold Air Air 1.0 1.0 0.1 0.1 26 of 66 0 204 24 0 200 20 SME04, 25jun04, [email protected] 0 106 16 0 102 12 80 80 0 40 40 0 0 -04 -4 0 -08 -8 0 -102 -12 Temperature Temperature(degC) (degC) ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Black Sphere • Assumptions – satellite=black sphere hence α=ε=1 – infinitely conductive, deep space at 0 K – low orbit around Earth • in Sun – no Planet, no albedo (π r ) q = (4 π r ) σ T 2 2 4 α=ε=1 S qS =σ T 4 4 r qS T T = 5o C SME04, 25jun04, [email protected] 27 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Black Sphere • in Sun with Earth – no albedo (π r ) q 2 S ( ) ( ) + F 4 π r 2 σ TE4 = 4 π r 2 σ T 4 F=1/2 α=ε=1 qS σ TE4 + =σ T 4 4 2 r qS Earth TE T T = 27o C ∆T = 22 o C SME04, 25jun04, [email protected] 28 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Black Sphere • in Sun with Earth and Albedo (π r ) q 2 S ( ) ( ) ( ) + F 4 π r 2 σ TE4 + F 4 π r 2 a q S = 4 π r 2 σ T 4 σ TE4 1 a =σ T 4 + qS + 2 4 2 α=ε=1 Earth r qS T = 56 o C F=1/2 TE T ∆T = 29o C qS SME04, 25jun04, [email protected] albedo=a qS 29 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Real Body radiated to deep space qs Qr = ei Ai Fi, space s (Ti 4 − Tspace4 ) solar absorbed qs Fi,s Ai ai albedo absorbed qs qs a Fi,a Ai ai radiated to planet Qp =ei Ai Fi,p s (Ti −Tp ) 4 SME04, 25jun04, [email protected] 4 30 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Real Body • Real Body in Sun – assumes that body in infinitely conductive, no albedo, no planet flux – assumes that sink temperature is 0 K (not far from deep space) qs As T is independent of area A depends only of α/ε A α As qs = ε A σ T 4 α qs 4 T= Fs ε σ where F S is the projected area As Fs = A SME04, 25jun04, [email protected] α T= ε 4 4 Fs 394 K with qs = 1367 W/m2 31 of 66 ESTEC Thermal & Structure Division flat plate cylinder S S n r θ θ r h n l sphere w Surface 1-s plate 2-s plate cylinder sphere cube FS 1 1/2 1/π 1/4 1/6 α 1.00 0.20 0.94 0.23 0.15 0.20 ε 1.00 0.88 0.81 0.025 0.05 0.20 α/ε 1.00 0.23 1.16 9.20 3.00 1.00 Ap / A Steady-State Temperature (degC) 1.00 121 -1 136 413 245 121 0.50 58 -44 71 304 163 58 0.32 23 -69 34 242 116 23 0.25 5 -81 16 212 94 5 0.17 -21 SME04, -99 25jun04, -12 [email protected] 165 58 -21 black CFRP sand-blasted Al VDA VDAu black paint Electrodag 501 (-) white paint PSG120-FD 2 (W/m ) S 1367.0 black body for θ=0, TS = 0 K and qs = 1367 W/m2 PLAY with α/ε RATIO 0.90 0.80 1.13 133 68 32 14 -14 32 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Real Body • Steady-state: General Case – assumes that body in infinitely conductive – solar, albedo and planet fluxes – view factor to sink temperature at Ts≠0 K Fs, Fa, Fp solar, albedo, planet factors (-) qs, qa, qp solar, albedo, planet fluxes (W/m2) a Ts BS Q albedo factor sink temperature Gebhart factor to sink power dissipation ( (-) (K) (-) (W) Bs qs As Ts A qa = a qs qp α solar absorbtivity (-) ε infrared emissivity (-) A radiative area (m2) ) ε A BS σ T 4 − TS4 = α Fs A qs + α Fa A qa + ε Fp A q p + Q SME04, 25jun04, [email protected] 33 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Real Body Ts Bs As qs qa = a qs A solar infrared dissipation α (Fs + a Fa ) qs Fp 4 Q 4 T =4 + Tp + TS + ε BS σ BS ε A BS σ qp when sink Ts surrounds (BS=1) body at T and only solar flux qs α qs T= Fs + TS4 ε σ 4 SME04, 25jun04, [email protected] 34 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Examples ULYSSES (1989) •s SME04, 25jun04, [email protected] 35 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Examples ISO (1995) SME04, 25jun04, [email protected] 36 of 66 ESTEC Thermal & Structure Division 2. Satellite Energy Balance - Examples ARTEMIS (2001) SME04, 25jun04, [email protected] 37 of 66 ESTEC Thermal & Structure Division 3. Role ROSETTA* FM in LSS, dec01 Thermal Control Engineering 1. heat transfer basics 2. satellite energy balance 3. role 4. design 5. means *without Solar Panels SME04, 25jun04, [email protected] 38 of 66 ESTEC Thermal & Structure Division 3. Role • maintain within Specified Ranges – – – – temperatures temperature gradients (K/length) temperature stability (K/time) radiative/conductive heat flow (W) SPOT 5 Solid State Recorder (ALS) On Board Data Compression Unit (ALS) SME04, 25jun04, [email protected] 39 of 66 ESTEC Thermal & Structure Division 3. Role SOHO, STM • of What? – – – – electronic units instrument e.g. optical bench S/C structure interface between modules PLM 15 Instruments Visual Monitoring Camera (AST) SVM SME04, 25jun04, [email protected] 40 of 66 ESTEC Thermal & Structure Division 3. Role - Typical Requirement • Narrow Temperature Ranges – electronics equipment • classical equipment • battery • propulsion system [ -10, +40] °C [ 0, +20] °C [ +10, +50] °C • limited Temperature Gradients – – – < 5°C across optical instrument (1.5 m) < 2°C/m for structural element < 5°C between MMH and NTO tanks ∆T ∆T/∆x ∆T • Stable Temperatures – – – < 5 K/h < 0.1 K/mn < 100 µK/mn ∆T/∆t ∆T/∆t ∆T/∆t for typical electronic unit for CCD camera for cryogenic telescope • Why is it so important? – low temperatures – narrow temperature ranges – small temperature gradients for reliability of components for sensitivity of detectors, units for pointing of instruments, S/C SME04, 25jun04, [email protected] 41 of 66 ESTEC Thermal & Structure Division 4. Design ROSETTA* FM in LSS, dec01 Thermal Control Engineering 1. heat transfer basics 2. satellite energy balance 3. role 4. design 5. means *without Solar Panels SME04, 25jun04, [email protected] 42 of 66 ESTEC Thermal & Structure Division 4. Design stored energy (mCP )i conducted* flux dTi = dt ∑ j radiated* flux fluid flow (not visualised) internal external loads loads Cij (Tj −Ti ) + ∑ Rij s (Tj −Ti )+ ∑ Fij (Tj −Ti ) + Qii + Qie 4 */convective Space Node s Ts j *incl. to space *excl. to planet radi Ris σ ation (T 4i T 4 s ) tion* c u d con -T i) T ( k C ik Node k Tk 4 j tion* c u d con -T j) T i ( C ij Node i Ti mCi α i ε i tion radia 4-T i4 ) T Rikσ( k Solar UV Node j Tj tion radia 4 T 4 ) - j Rijσ (Ti Pla ne Al t be IR do UV * convective SME04, 25jun04, [email protected] 43 of 66 ESTEC Thermal & Structure Division 4. Design Balance HEAT FLOWS to fulfil REQUIREMENTS results in TEMPERATURES • through Heating – absorb from external sources (solar, albedo, planet IR) • selective coatings – use the internal sources • electronic dissipations, MLI insulation efficiency – dissipate heat internally • heater • RTG, RHU SME04, 25jun04, [email protected] 44 of 66 ESTEC Thermal & Structure Division 4. Design – transfer heat from hot area • conduction, radiation • latent heat of evaporation/condensation • or through Cooling – reject to deep space (3 K) • with low α/ε radiative coatings on radiators – transfer heat to cold area • by conduction, • radiation • through condensation/boiling in fluid loops or heat pipes – through cryogenic techniques • cryostats • coolers (Peltier, Joule-Thomson…) – ablation SME04, 25jun04, [email protected] 45 of 66 ESTEC Thermal & Structure Division 4. Design – Radiative Concept PROBA1 FM • Principle – when internal power dissipation small w.r.t. external absorbed energy – balance between • absorbed incident radiant energy (solar…) • emitted radiant energy (σT4) • Characteristics – no insulation – average temperature driven by • external fluxes – local temperature hot spots still possible • Application: PROBA1 SME04, 25jun04, [email protected] 46 of 66 ESTEC Thermal & Structure Division 4. Design – Insulated Concept • Principle – when heat source irradiates few sides • Sun, planet IR (Mercury, Mars, Moon) XMM FM 1999 – balance between • internally dissipated power (P) • emitted radiant energy (σT4) HYPPARCOS FM, 1990 • Characteristics – insulation of Sun illuminated sides (MLI) – shadow sides • with high IR emissivity • radiate to deep space => RADIATORS – preferred attitude for radiators – average temperature driven by • internal power dissipation – local temperature hot spots still possible SME04, 25jun04, [email protected] 47 of 66 ESTEC Thermal & Structure Division 4. Design – Insulated Concept ASTRA-1K FM Antenna Deployment • Advantages w.r.t. Radiative Concept – less sensitive to • eclipses • external loads changes – temperatures are more uniform – little ageing of unirradiated coatings We are between those 2 CONCEPTS SME04, 25jun04, [email protected] 48 of 66 ESTEC Thermal & Structure Division 5. Means ROSETTA* FM in LSS, dec01 Thermal Control Engineering 1. heat transfer basics 2. satellite energy balance 3. role 4. design 5. means *without Solar Panels SME04, 25jun04, [email protected] 49 of 66 ESTEC Thermal & Structure Division 5. Means - Limitations • Cooling Limitations – radiator – cryo-coolers – liquid He 100 mW 1W few mW at 100 K at 50 K at 4 K for 0 W dissipation for 100 W dissipation for 1 ton/2 years • Heat Transport Limitation/Performance – conduction (pure Al tube k=200 W/m.K) 1.5 W @20°C l=1.00 m Ø=2 cm 11 kW@20°C l=0.70 m Ø=4.04 m – heat pipe (Al tube) 11 kW @20°C l=0.70 m Ø=2.5 cm – radiation (from a black surface ε=1) 11 kW @20°C A= 88 m2 11 kW @20°C A= 27 m2 SME04, 25jun04, [email protected] ∆T= 25 K ∆T= 3 K m= 0.8 kg m= 24 t ∆T= 3 K m= 2 kg ∆T= 25 K ∆T= 290 K 50 of 66 ESTEC Thermal & Structure Division 5. Means α φs A ε Aσ T 4 RADIATION CONDUCTION - coating - absorber - MLI blanket - radiator - structural material - doubler, filler, adhesive LATENT HEAT-ABLATION PASSIVE ACTIVE - TPS - PCM k A ∆T l - washer, strap, bolt, tyrap, stand-off - foam HEATERS HEAT PIPES - FLOOPS - thermostat control - fixed/variable conductance - electronic control - ground control - loop heat pipe - monophasic/diphasic fluid PASSIVE ACTIVE LOUVRES COOLERS ENERGY ENERGY CONTRIBUTION CONTRIBUTION - mechanical - electrical SME04, 25jun04, [email protected] ENERGY ENERGY TRANSFER TRANSFER 51 of 66 ESTEC Thermal & Structure Division 5. Means • Passive Systems Pros/Cons – no mechanical moving parts or moving fluids, no power consumption • simple to design/implement/test • low mass and cost • highly reliable – BUT low heat transport capability • except heat pipes • Active Systems Pros/Cons – mechanical moving parts or moving fluids or electrical power required • • • • complex design generate constraints on S/C design and test configurations high mass and cost less reliable than PTC means SME04, 25jun04, [email protected] 52 of 66 ESTEC Thermal & Structure Division 5. Means - PTC – Radiation, Coatings Coated Sphere Equilibrium Temperature in Sun • controls Heat absorbed by External S/C Surfaces – with α, solar absorptivity α/ε=10 500 K α/ε=2 337 K α/ε=1.5 314 K α/ε=1 284 K α/ε=0.75 • controls Heat radiated to Space 264 K α/ε=0.5 – with ε, IR emissivity 238 K α α/ε=0.25 200 K ε SME04, 25jun04, [email protected] 53 of 66 ESTEC Thermal & Structure Division 5. Means - PTC - Radiation, MLI Blankets ε ε ε ε • Purpose Thot – insulating material – acts as a radiation barrier – decreases heat flow inside S/C • Sun, albedo, IR planet • ascent aerothermal after fairing jettison • ME/ABM firing Tcold – decreases heat losses from S/C Thot • IR energy ε/n Tcold • Principle – stack of n layers with low emissivity ε – connected only by radiation with limited contact areas – equivalent to reduce the emissivity by n SME04, 25jun04, [email protected] 54 of 66 ESTEC Thermal & Structure Division 5. Means - PTC - Radiation, MLI Blankets • Standard MLI – stack of thin polymer foils • Kapton®, Mylar® (5-25 foils) – separated (avoid contact) by • spacer/mesh (Dacron®/Trevira®) • embossed, crinkled • perforated or not – 1x bka/VDA-net unperf. 3-23 x VDA/my/VDA-net perf. 1x VDA/my or ka/VDA perf. – attachment 1 mil 0.25 mil 1 mil space exposed side internal layers innermost layer • stand-offs + clip washers • sewed/glued velcro • dacron yarn SME04, 25jun04, [email protected] 55 of 66 ESTEC Thermal & Structure Division 5. Means - PTC - Radiation, Radiators • Purpose – cool detectors, optical components, mirrors – improve the performances of Qspace • Scientific P/L (all wavelength ranges) • Earth observation (mainly IR) • Principle – direct coupling to deep space @2.73 K Q space = Q electric + Q losses – heat lift decreases in T4 Qelectric Qlosses insulation satellite 6 W/m2 @100K SME04, 25jun04, [email protected] 56 of 66 ESTEC Thermal & Structure Division 5. Means - PTC - Radiation, Radiators MLI INTEGRAL STM radiators SME04, 25jun04, [email protected] 57 of 66 ESTEC Thermal & Structure Division 5. Means - PTC – Conduction, Increase • Structural Material Selection – Al alloy – Ti alloy – steel 120-170 W/m.K 7-15 W/m.K 10-40 W/m.K doubler facesheets S/C wall unit honeycomb • Thermal Doublers strap – spread heat dissipation under unit – 1 mm thick Al alloy sheet • Straps/Braid (detector to radiator) – Cu, Al alloy wrapped in MLI/SLI – short < 10 cm radiator S/C structure • Contact Area SME04, 25jun04, [email protected] 58 of 66 ESTEC Thermal & Structure Division 5. Means - PTC – Conduction, Increase • Interface Fillers – better unit to S/C conductance – graphite (Sigraflex®) • laminated graphite sheet • electrical conductor • thickness 0.25 mm unit – silicone elastomer (Cho-therm® 1671) filler • silicone binder, filled with boron nitride particles, reinforced with fibreglass cloth • electrical isolator honeycomb SME04, 25jun04, [email protected] 59 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Louvres bi-metallic spring housing (low ε) blades (low ε) – dumps more/less power to space – accommodate extreme variation of energy • internal power • solar fluxes (interplanetary S/C) frame (low ε) – with little temperature change – save heater power radiator (high ε) actuator • Principle blades θ S/C radiator bearings • Purpose S/C radiator bearings – blades covering a standard radiator – 16 blades on bearings rotates – opens/closes radiator to deep space • variation of IR emittance ε – actuator: bi-metallic spring sensing the radiator temperature bearings SME04, 25jun04, [email protected] 60 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Louvres SENER Louvre on ROSETTA* PFM Louvre on CASSINI-HUYGENS louvre *without Solar Panels SME04, 25jun04, [email protected] 61 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Heaters • Purpose – additional source of heat inside S/C • replace power when unit is switched-off • warm up dormant units prior to swon • control temperature and gradient metal run line in line out kapton SME04, 25jun04, [email protected] 62 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Heaters ROSETTA FM Heaters heaters PCU Battery 3 ROSETTA FM ROSINA DPU heaters Battery 2 SME04, 25jun04, [email protected] 63 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Heaters ROSETTA FM Thruster 12A ROSETTA FM OSIRIS PEM-H glue FCV selfredundant heaters SME04, 25jun04, [email protected] 64 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Heat Pipes Grooved Heat Pipe • Purpose – transport heat by convection with small ∆T – avoid temperature gradients • Principle – – – – liquid vaporizes at evaporator gas flows to cold end gas condensates at cold end liquid returns by capillary forces Qin groove Qout adiabatic section evaporator liquid vapour liquid condenser SME04, 25jun04, [email protected] 65 of 66 ESTEC Thermal & Structure Division 5. Means - ATC - Heat Pipes Ø 12 mm Telecom Panel Heat Pipe (Swales) bi-tube saddle SME04, 25jun04, [email protected] 66 of 66 ESTEC Thermal & Structure Division
© Copyright 2026 Paperzz