Neon Dimer Binding : an ab initio Calculation Alexandre Martins Dias * Resumo: Usando o método Hartree Fock Restrito (RHF) e a teoria de Perturbação de Segunda Ordem de Moller-Plesset (MP2) para sistemas de camada fechada, com um conjunto de funções de base do tipo TZV (Triple Zeta Valence), como implementado no programa ab initio GAMESS, versão 4.0, para cálculos de estrutura eletrônica, este estudo apresenta o cálculo da curva de potencial para o estado fundamental da molécula Ne2. Os resultados proporcionam uma boa predição da energia de ligação da molécula. Palavras-chave: Ne2, GAMESS, ab initio, RHF, MP2. Abstract: Using Restricted Hartree Fock (RHF) method and Second Order Moller-Plesset Disturbance theory (MP2) for closed layer systems with a set of basis functions like Triple Zeta Valence (TZV) as implemented in the version 4.0 ab initio GAMESS program for electronic structure calculations, this study presents a potential curve calculation for the ground state of the Ne2 molecule. The results provide a good prediction about the molecule linking energy. Key words: Ne2, GAMESS, ab initio, RHF, MP2. 1. INTRODUCTION Diatomic molecules of noble gases have been studied from several points for empirical and ab initio calculations (TANAKA; YOSHINO, 1972; COHEN; SCHNEIDER, 1974). The interest in these molecules were due to the fact that they constitute a class of molecules for laser applications (MICHELS; HOBBS; WRIGTH, 1978). Recently, new ab initio potentials for neon dimmer have been obtained in the studies of molecular global simulations, condensed phase and tests of the several basis sets for weakly interacting system (EGGENBERGER et al., 1994; NASRABAD, 2003). Ab initio calculations (CLEMENTI,1965) showed that ground 1 ∑ +g state 2 of 2 dimer 2 Ne2 2 with 4 configuration (1σu) (1σg) (2σg) (2σu) (1πg) (1πu)4 2 2 (3σg) (3σu) , dissociates into two ground states Ne (1s22s22p6) atoms with the total energy -257.0940 Eh (hartrees). Calculations based on MS-Xα (not frozen core approximation) (KONOWALOW et al., 1972), LCAOMOSCF (GILBERT; WAHL, 1967) and VCM-Xα (LEITE et al., 1981; DIAS, 1981; DIAS; ROSATO, 1982) methods have not shown the van der Waals minimum for this molecule. ___________________________________________ * Professor e Coordenador da Faculdade de Ciência da Computação da UNIFENAS - Alfenas - MG. E-mail: [email protected] The ab initio calculation performed in this work is a trial to predict the binding of the Ne2 dimer, since that recent calculations (EGGENBERGER et al., 1994; NASRABAD, 2003) have been performed for this purpose. 2. CALCULATION REPORTS These ab initio calculations were performed by RHF with 2nd order Moller-Plesset (MP2) computation methods, as implemented into GAMESS (SCHMIDT et al., 1993) package, for Windows PC computers optimized by Alex A. Granovsky in Moscow State University, using Triple Zeta Valence(TZV) with one d function basis set, initial orbitals generated by Huckel guess routine with molecule in D2H point symmetry group and MP2 applied to the last orbital. Figure 1 shows the potential curve obtained in this work. The separated atom limit energy reached the value of -257.090146 Eh. The minimum for total energy of molecule has been evaluated as -257.090273 Eh at Re = 5.6 au (bohr) or 2.968 Å, assumed as the equilibrium internuclear distance of the ground state of the molecule. Then, the binding, obtained as the difference between the separated atom limit and the minimum of the potential curve, is 0.000127 Eh or 0.00346 eV. Experimental results related by Herzberg (HUBER; HERZBERG, 1979) and Ira N. Levine(1991) shown 0.00013 Eh or 0.0035 eV for binding energy to the 120 ________________________________________________R. Univap,São José dos Campos,SP,v.12,n.22,dez.2005. equilibrium internuclear distance at R =5.85 au or 3.1 Å. Recent calculations (NASRABAD, 2003), using extensive (av45z) basis set, result in a more deep binding energy than experimental value at Re = 3.097 Å related to the HF-limit of separated atoms. Table 2 shows the numerical values for the total energies from VCM-Xα, MS-Xα and LCAO-MO-SCF methods for the same internuclear separations. These values are plotted in Figure 2, showing repulsive potential curves. Ne-Ne Table 2 - Total energies for the ground state of Ne2 Molecule for different internuclear separation, in hartree units. Re LCAOc VCM-Xα αa MS-Xα αb En erg y(au ) 0.0003 1(Sigma)g+ 0.0002 0.0001 0.0000 -0.0001 -0.0002 2.120 2.968 3.816 4.664 R(Angstrom) Fig. 1 - Potential curve for the ground state of Ne2 molecule from RHF+MP2 calculations. Table 1 sums up the numerical values for these ab initio calculations and several others results obtained by different methods for comparison. Table 1 - Total energies for ground state of Ne2 molecule. All energies in hartree units and internuclear Re distance in atomic units. a b Re RHF+MP2 4,2 -257,088405 VCM 4,4 -257,089259 4,6 -257,089749 4,8 -257,090022 5,0 -257,090167 -257,0720 5,2 -257,090238 -257,0770 c MS-Xα α -257,090273 5,8 -257,090266 -257,0850 6,0 -257,090254 -257,0870 6,2 -257,090238 -257,0880 6.4 -257,090222 -257,0580 -257,090183 ∞ -257,090146 -256,9490 -256,9535 -257,0640 4,0 -257,0220 -257,0225 -257,0845 5,0 -257,0720 -257,0580 -257,0925 6,0 -257,0870 -257,0635 -257,0930 ∞ -257,0920 -257,0700 -257,0930 a) VCM-Xα (Leite et al., 1981; Dias, 1981; Dias; Rosato, 1982). b) MS-Xα with not frozen core approximation (KONOWALOW et al., 1972). c) LCAO-MO-SCF (GILBERT; WAHL, 1967). R (au) -256.740 2.50 3.50 4.50 5.50 6.50 7.50 -256.780 VCM d LCAO MS -256.820 -256.860 -256.900 -257,0925 -257,0930 -257.060 -257.100 -257,0635 -257.140 -257,0930 -257,0930 -257,090195 3,5 -257.020 6,5 7,0 -256,9980 -256.980 5,6 6,8 -256,7610 -256.940 -257,0620 -257,090208 -256,7640 LCAO 5,5 6,6 3,0 Energy (hartrees) 0.0004 Fig. 2 - Potential curves for ground state of Ne2 molecule from VCM-Xα, MS-Xα and LCAO-MO-SCF methods. 3. FINAL REMARKS -257,0920 -257,0700 -257,0930 a) This work. b) VCM-Xα (Leite et al.,1981; Dias,1981; Dias;Rosato, 1982). c) MS-Xα (Konowalow et al.,1972). d) LCAO-MO-SCF (Gilbert;Wahl, 1967). R. Univap,São José dos Campos,SP,v.12,n.22,dez.2005. It is well known from early calculations with the Restricted Hartree-Fock methods (WAHL, 1964), that it is not easy to exhibit the binding for these class of molecules and only half of the binding was obtained fromthe extensive CI calculations (DAS; WAHL, 1966). _________________________________________121 The small value of the binding for this molecule is the main reason for the difficulties in theoretical calculations, because of the exactness necessary by the calculations with approximated methods, but the results obtained in this work have shown an attractive potential curve compared with the repulsive curves of the others methods. In Figure 2, we observe that VCM-Xα and MSXα methods present similar potential curves. It is due to the muffin-tin approximations used for charge density into some space regions of the molecule geometry adopted in VCM calculations and MS methods, but we observe that VCM-Xα leads to the separated atom limit energy close to the Hartree-Fock limit (CLEMENTI, 1965). The results obtained for the RHF + MP2 energies for the ground state of the Ne2 molecule in this work, with TZV basis set as implemented into GAMESS package, essentially shows weakly bound Ne atoms. The separated atom limit energy obtained is in good agreement to the HF limit (CLEMENTI, 1965), and the binding of molecule subject of this work is close to the experimental value. We know that the ground state of Ne2 molecule has the same number of electron pairs in π ligand orbitals and π non-ligand orbitals, producing unstable state (HUBER; HERZBERG, 1979). GILBERT, T. L.; WAHL, A. C. Single-configuration wavefunctions and Potential curves for the Ground States of He2, Ne2 and Ar2. J. Chem. Phys., v. 47, p. 3425, 1967. HUBER, K. P.; HERZBERG, G. Molecular Spectra and Molecular Structure: I. Constant of Diatomic Molecules, New York: Van Nostrand, 1979. KONOWALOW, D. D.; WEINBERGER, P.; CALAIS, J. L.; CONNOLY, J. W. D. Self-consistent-field Xα cluster calculations for the ground state Ne2 molecule. Chem. Pys. Lett., v. 16, p. 81, 1972. LEITE, J. R.; FAZZIO, A.; LIMA, M. A. P.; DIAS, A. M.; ROSATO, A.; SEGRE, E. The Variational Cellular Method for Quantum Mechanical Applications: Calculations of the Ground and Excited States of F2 and Ne2 Molecules. Int. J. of Quantum Chem., v. 15, p. 401-408, 1981. LEVINE, I. N. Quantum Chemistry, 4th ed., New Jersey: Prentice-Hall Inc., 1991. MICHELS, H. H.; HOBBS, R. H.; WRIGTH, L. A. Electronic structure of the noble gas dimmer ions: I. Potential energy curves and spectroscopy constants. J. Chem. Phys., v. 69, p. 5151, 1978. 4. REFERENCES CLEMENTI, E. Ab initio Computations in Atoms and Molecules. IBM J. Res. Dev., v. 9, p. 2, 1965. COHEN, J. S.; SCHNEIDER, B. Ground and excited states of the Ne2 and Ne2+: I. Potential curves with and without spin-orbit coupling. J. Chem. Phys., v. 61, p. 3230, 1974. DAS, G.; WAHL, A. C. Extended Hartree-Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2. J. Chem. Phys., v. 44, p. 87, 1966. DIAS,A. M. Estudo do Estado Fundamental e do 1 Estado Excitado EGGENBERGER, R.; GERBER, S.; HUBER, H.; WELKER, M. A new ab initio potential for the neon dimmer an its applications in molecular dynamics simulations of the condensed phase. Mol. Physics., v. 82, n. 4, p. 689-699, 1994. ∑ + u da molécula Ne2 pelo Método Celular Variacional. 1981. Dissertação (Mestrado em Ciências). ITA. 1981. DIAS, A. M.; ROSATO, A. Calculation of the Ground and Excited States of the Ne2 Molecule by the Variational Cellular Method. Rev. Bras. de Física, v. 12, n. 2, p. 315-345, 1982. NASRABAD, A. E. Global Simulation of the Noble Gases an Their Binary Mixtures. Koln. 2003. Thesis (Inaugural-Dissertation zur Erlangung Doktorgrades). Universitat zu Koln. 2003. SCHMIDT, M. W.; BALDRIDGE, K. K.; BOATZ, J. A.;ELBERT, S. T.; GORDON, M. S.; JENSEN, J. H.; KOSEKI,S.; MATSUNAGA, N.; NGUYEN, K. A.; SU, S. J.;WINDUS, T. L.; DUPUIS, M.; MONTGOMERY, J. A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem., v. 14, p. 1347-1363, 1993. TANAKA,Y; YOSHINO, K. Absorption spectra of Ne2 and NeHe molecules in the vacuum-UV region. J. Chem.Phys., v. 57, p. 2964, 1972. WAHL, A. C. Analytic Self-consistent Field Wavefunctions and Computed Properties for Homonuclear Diatomic Molecules. J. Chem. Phys., v. 41, p. 2600, 1964. 122 ________________________________________________R. Univap, São José dos Campos, SP, v.12,n.22,dez.2005.
© Copyright 2026 Paperzz