Bull. Fr. Pêche Piscic. (1996) 343:175-182 — 175 — ISOLATION AND CHARACTERIZATION OF MITOCHONDRIAL DNA FROM THE ENDANGERED WHITE-CLAWED CRAYFISH AUSTROPOTAMOBIUS PALLIPES PALLIPES, LEREBOULLET, 1858. F. G R A N D J E A N , C. S O U T Y - G R O S S E T . Laboratoire d e Biologie Animale, URA C N R S n° 1975, Université de Poitiers, 40 avenue du Recteur Pineau, 8 6 0 2 2 Poitiers C e d e x (France). Reçu le 29 mars 1996 Accepté Received 29 March, le 20 mai 1996 Accepted 20 May, 1996 1996 ABSTRACT Mitochondrial DNA (mtDNA) variation in the w h i t e - c l a w e d crayfish, Austropotamobius pallipes pallipes, w a s e x a m i n e d by restriction e n d o n u c l e a s e analysis of s a m p l e s obtained from three geographical locations representing t w o very différent habitats : the Crochatière and the M a g o t for b r o o k s and the Pinail for p o n d s . This s t u d y used a new type of molecular m a r k e r in c r a y f i s h . T h e m e t h o d of m t D N A e x t r a c t i o n w a s not b a s e d on the c l e a r lysate m e t h o d or o n ultracentrifugation a n d used no end-labelling d é t e c t i o n . It is discussed according t o t h e literature a b o u t m a r i n e c r u s t a c e a n s . M t D N A w a s d i g e s t e d w i t h 6 e n d o n u c l e a s e s . The molécule size of the m t D N A of the w h i t e - c l a w e d crayfish w a s approximately 17750 ± 5 8 0 b a s e pairs. T w o r e s t r i c t i o n e n z y m e s p r o d u c e d p o l y m o r p h i c d i g e s t i o n p a t t e r n s , d e f i n i n g a t o t a l of t h r e e h a p l o t y p e s (1-3). T h e r e w a s a s h a r e d h a p l o t y p e 2 b e t w e e n i n d i v i d u a l s a m o n g the t w o brooks. The haplotype 3 w a s only f o u n d in individuals obtained from ponds of Pinail. K e y - w o r d s : Austropotamobius pallipes, m t D N A , genetic variation, RFLR ISOLATION ET CARACTÉRISATION DE L'ADN M I T O C H O N D R I A L C H E Z L ' É C R E V I S S E À P A T T E S B L A N C H E S AUSTROPOTAMOBIUS PALLIPES PALLIPES, LEREBOULLET, 1858, ESPÈCE M E N A C É E . RÉSUMÉ La variabilité d e l'ADN m i t o c h o n d r i a l ( A D N m t ) c h e z l'écrevisse à p a t t e s b l a n c h e s , Austropotamobius pallipes pallipes, est examinée par l'utilisation d ' e n d o n u c l é a s e s d e restriction à partir d'échantillons issus d e trois sites caractérisant d e u x t y p e s d'habitats : la Crochatière et le M a g o t pour les ruisseaux et le Pinail pour les mares. Cette é t u d e met en oeuvre un nouveau t y p e d e marqueur moléculaire chez les écrevisses. La m é t h o d e d'extraction d e l'ADNmt n'est pas basée sur la m é t h o d e d e lyse alcaline ou sur d e s ultracentrifugations et n'utilise pas d e m a r q u a g e terminal. La t e c h n i q u e d'extraction est discutée par rapport aux m é t h o d e s employées chez les crustacés marins. L'ADNmt est digéré à l'aide d e six endonucleases. La taille de la molécule d ' A D N m t chez l'écrevisse à pattes blanches est a p p r o x i m a t i v e m e n t de 17750 ± 580 paires de base. Deux e n z y m e s d e restriction d o n n e n t d e s profils de restriction polymorphes, définissant trois haplotypes (1-3). L'haplotype 2 est présent dans les populations provenant d e s deux ruisseaux. L'haplotype 3 est exclusivement trouvé chez les écrevisses provenant d e s mares d u Pinail. M o t s - c l é s : Austropotamobius pallipes, A D N m t , variabilité génétique, PLFR. Article available at http://www.kmae-journal.org or http://dx.doi.org/10.1051/kmae:1996014 Bull. Fr. Pêche Piscic. (1996) 343 :175-182 — 176 INTRODUCTION T h e natural distribution of Austropotamobius pallipes pallipes (Lereboullet, 1858) covers W e s t e r n E u r o p e from 5 6 ° N in Great Britain south t o 38°S in Spain and from 8°W in Ireland t o 16°E in f o r m e r Yugoslavia. During the last century, native populations of A. pallipes t h r o u g h o u t Europe a n d in particular in France (VIGNEUX et al., 1993) have been greatly r e d u c e d in number. This d é c l i n e is d u e t o acidification of rivers, pollution, exotic crayfish acclimatization, and other h u m a n interférence w i t h natural habitats (WESTMAN, 1985). It has recently been classified b y t h e I.U.C.N. as being vulnérable a n d rare (GROOMBRIDGE, 1994). If t h e c o n s e r v a t i o n of this s p e c i e s required t h e préservation of existing populations, it must a l s o i n c l u d e restocking o p é r a t i o n s in suitable habitats. Before restocking a n d s t o c k i n g , it is i m p e r a t i v e t o k n o w genetic différences between p o p u l a t i o n s , because local p o p u l a t i o n s m a y be a d a p t e d t o their local e n v i r o n m e n t a n d introduction of genetically différent individuals c o u l d a d v e r s e l y alter the gene p o o l . F e w s t u d i e s have been p e r f o r m e d to appreciate the level of m o r p h o m e t r i c variation in A. pallipes. A L B R E C H T (1982) f o u n d morphological différences in a n u m b e r of characters b e t w e e n p o p u l a t i o n s s a m p l e d f r o m d i f f é r e n t r é g i o n s of E u r o p e . A T T A R D a n d V I A N E T (1985) s h o w e d m o r p h o l o g i c a l différences between French, Irish a n d Italian p o p u l a t i o n s . H o w e v e r , e l e c t r o p h o r e t i c analysis of gênerai proteins d i d not reveal any différences within t h e s p e c i e s (NEMETH a n d T R A C E Y, 1979 ; ALBRECHT a n d V O N H A G E N , 1981 ; A G E R B E R G , 1 9 9 0 ) . A T T A R D a n d V I A N E T (1985) revealed a l o w level of h e t e r o z y g o s i t y r a n g i n g f r o m 0 . 0 1 3 t o 0 . 0 2 6 b e t w e e n p o p u l a t i o n s . In gênerai, very little is k n o w n a b o u t p o p u l a t i o n s g e n e t i c s in c r a y f i s h . A t t h e p r é s e n t t i m e , o n l y e l e c t r o p h o r e t i c a n a l y s i s h a s b e e n p e r f o r m e d a n d this m e t h o d s e e m s n o t t o be a p p r o p r i a t e f o r t h e s t u d y of i n t r a s p e c i f i c g e n e t i c variation whatever t h e crayfish species ( B R O W N , 1980 ; B U S A C K , 1988 ; FEVOLDEN a n d H E S S E N , 1989). This lack of a p p l i e d genetic research is harmful f r o m a conservation (as well a s s t o c k m a n a g e m e n t ) point of view. In t h e l a s t d é c a d e , a n o t h e r m e t h o d o f i n v e s t i g a t i n g g e n e t i c r e l a t i o n s h i p s h a s b e e n d e v e l o p e d from the analysis of mitochondrial DNA (mtDNA) using analysis of Restriction F r a g m e n t L e n g t h P o l y m o r p h i s m (R. F. L. P.). T h e m t D N A has several characteristics w h i c h m a k e it useful as a s p e c i e s - s p e c i f i c marker. T h e usually maternai a n d n o n - r e c o m b i n a t i o n a l t r a n s m i s s i o n a n d t h e f a s t e r rate of évolution o f m t D N A , c o m p a r e d w i t h n u c l e a r g é n o m e (5 t o 10 t i m e s more rapid) ( B R O W N et al., 1979), make it useful for t h e study of phylogenetic r e l a t i o n s h i p s o r of microevolutionary processes within species (WILSON ef al., 1985 ; AVISE ef al., 1 9 8 7 ; MORITZ et al., 1987). Generally, genetic variation a m o n g p o p u l a t i o n s is often m o r e d r a m a t i c for m t D N A t h a n for nuclear DNA or nuclear gene p r o d u c t s , s u c h as isozymes (AVISE, 1 9 8 5 ; Z W A N E N B U R G et al., 1992). The scarcity of papers on c r u s t a c e a n s , indeed even n o n e o n c r a y f i s h , is p r o b a b l y related t o t h e difficulty of extracting total m t D N A for RFLP analysis. A f e w s t u d i e s have been p e r f o r m e d o n marine Decapods. K O M M et al. (1982) s h o w e d preliminary r e s u l t s in Panulirus argus a n d revealed some heterogeneity b e t w e e n individuals. In Jasus verreauxi, BRASHER ef al. (1992a) s t u d i e d 25 individuals with six restriction e n z y m e s : t w o r e s t r i c t i o n sites (on 4 5 obtained) w e r e sufficient t o distinguish New Zealand p o p u l a t i o n s from A u s t r a l i a n o n e s . In Jasus edwardsii, OVENDEN et al. (1992) have c o m p a r e d 13 p o p u l a t i o n s a n d o b t a i n e d a nucleotides s u b s t i t u t i o n m e a n of about 0.78 whereas the heterozygosity w a s low in t h i s s a m e s p e c i e s (0.015 a c c o r d i n g t o S M I T H ef al., 1980). BRASHER et al. (1992b) c o n f i r m e d a high level of m i t o c h o n d r i a l p o l y m o r p h i s m in the g e n u s Jasus by studying 5 species. Seeing that O V E N D E N (1990) specified that s o m e marine species have less variable m i t o c h o n d r i a l g é n o m e s t h a n p r e v i o u s l y studied terrestrial a n d freshwater species, w e can hope that m i t o c h o n d r i a l DNA will b e a s u i t a b l e molecular marker in crayfish. T h e objectives of this s t u d y w e r e t w o f o l d : firstly, to outline a new molecular t e c h n i q u e for s t u d y i n g g e n e t i c variability of m i t o c h o n d r i a l DNA in crayfish a n d , secondly, t o appreciate the level of g e n e t i c variability within a n d b e t w e e n natural p o p u l a t i o n s of A. pallipes. Bull. Fr. Pêche Piscic. (19%) 343:175-182 — 177 — MATERIALS AND METHODS A d u l t crayfishes were c o l l e c t e d f r o m t w o s t r e a m s situated in t h e région of PoitouCharentes (France) : t h e Crochatière, the M a g o t a n d from a p o n d : the Pinail. 20 animais f r o m each brook were used for genetic study, but only 5 animais of Pinail have been analysed because this p o p u l a t i o n s e e m s t o be relie. Heart, green glands a n d testes obtained f r o m fresh animais were u s e d for the m t D N A extraction. Each sample w a s h o m o g e n i z e d in a Potter-Elvehjem homogenizer with a glass/teflon pestle after a d d i n g 15 ml of sucrose-TE-buffer (0.25 M sucrose, 60 m M EDTA, 30 m M Tris-HCI and 1.5% NaCI, p H 8). The h o m o g e n a t e w a s c e n t r i f u g e d in a 15 ml centrifuge t u b e at 700 g for 20 min at 4°C t o pellet nuclei and cellular débris. The supernatant, containing t h e mitochondria, w a s transferred t o a s e c o n d t u b e and centrifuged again under the s a m e c o n d i t i o n s . The remaining supernatant w a s centrifuged at 20000 g for 20 min at 4°C a n d a first c r u d e mitochondrial pellet was o b t a i n e d . To purify the first resulting m i t o c h o n d r i a l pellet, it w a s resuspended in 15 ml of TE-buffer (60 m M EDTA, 30 m M Tris-HCI a n d 1.5% NaCI, p H 8) a n d s p u n again under the previous c o n d i t i o n s . The pellet containing the m i t o c h o n d r i a w a s r e s u s p e n d e d in 980 ul of TE-buffer a n d 20 ul of 2 0 % Nonidet P-40 (Sigma) w a s a d d e d (final c o n c e n t r a t i o n of 0.4%) on ice d u r i n g 10 min with the aim of disrupting the mitochondrial m e m b r a n e s . The t u b e s were centrifuged f o r 10 min at 12800 g t o 4 ° C . T h e supernatant w a s p h e n o l - e x t r a c t e d t w i c e by a d d i n g an equal volume of s a t u r a t e d phénol (pH 8) t o eliminate the proteins in the s a m p l e . After each e x t r a c t i o n , the s a m p l e w a s s p u n for 8 min at 12000 g t o separate t h e a q u e o u s and phénol phases. Residual phénol was removed by a single c h l o r o f o r m - isoamyl extraction. S o d i u m acétate (pH 6) w a s a d d e d t o a final concentration of 0.3 M a n d the m t D N A precipitated by addition of o n e v o l u m e of 1 0 0 % isopropanol f o l l o w e d by s t a n d i n g for 1 hour at - 2 0 ° C . The mtDNA w a s pelleted at 15000 g for 30 min t o 4°C in a n E p p e n d o r f centrifuge and w a s h e d in 7 0 % (v/v) ethanol. The s a m p l e w a s dried under v a c u u m for 45 min and dissolved in 40 ul H 2 0 for ovaries, 20 ul for green gland a n d 10 ul for heart. A m o n g the six enzymes u s e d for the m t D N A analysis, five restriction endonucleases eut 6-base pairs : Pst I, Xho I, Bam Hl, Eco RI and Hind III, and one eut 4-base pairs : Hpa II. The restriction fragments obtained were separated in 1.2 % agarose gels in TE-buffer f o r 15 h at 30 v o l t s . G e l s w e r e s t a i n e d w i t h e t h i d i u m b r o m i d e a n d v i s u a l i z e d w i t h a UV light transilluminator. The restriction fragment p a t t e r n s f r o m each of the six endonucleases were identified by a letter, each individual being characterized by a c o m p o s i t e haplotype of several letters. RESULTS The size of the mitochondrial g é n o m e w a s estimated by s u m m i n g the restriction fragment sizes obtained after digestion with the following enzymes Pst I, Eco RI, Xho I (table I). T h e size of the m t D N A of the w h i t e - c l a w e d crayfish w a s f o u n d t o be approximately 17750 ± 580 base pairs. H i n d III a n d H p a II p r o d u c e d the greatest n u m b e r of b a n d s , many of small size. As the s u m s of t h è s e lengths are comparatively low, it is likely that even smaller f r a g m e n t s w e r e u n d e t e c t e d by the coloration m e t h o d . For t e s t e d e n z y m e s Pst I, B a m Hl, Eco RI, no différence in the restriction pattern between individuals c o u l d be d e t e c t e d (table I). B a m Hl had no restriction site in the molécule. Two patterns w e r e observed for the e n z y m e s H p a II and Hind III (table I a n d figure 1). For thèse e n z y m e s , différent m o r p h s w e r e separated by a single loss or gain of a restriction site. In total, three différent c o m p o s i t e g é n o t y p e s (haplotypes) were d e t e c t e d a m o n g the 45 crayfishes representing the three populations (table II). No intraspecific variability of the mitochondrial g é n o m e w a s apparent in M a g o t and in Pinail, ail crayfishes exhibited patterns 2 a n d 3, respectively. The haplotype 3 w a s only found in Pinail. The population of Crochatière s h o w e d an intraspecific variability by using the restriction e n z y m e H i n d III. The haplotype 1 w a s more fréquent in this population than h a p l o t y p e 2, w i t h respectively 7 5 % and 2 5 % . Bull. Fr. Pêche Piscic. (1996) 343 :175-182 — 178 — Table I : Estimated sizes (in base pairs) of mtDNA fragments resulting f r o m digestion w i t h restriction endonucleases in A. pallipes. For each enzyme, letters refer to the différent génotypes revealed. Tableau I : Tailles estimées (en paires de base) des fragments de restriction obtenus après digestion de l'ADNmt d'A. pallipes par différentes enzymes de restriction. Pour chaque enzyme, les lettres correspondent aux différents types de profils de restriction observés. H i n d III Total Table II H p a II Pst I Xho I E c o RI A B A B A A A 5520 5520 4330 4330 8235 9200 x 2 13545 2710 1590 1730 1460 7460 1865 1425 1425 1460 1250 x 2 935 x 2 935 x 2 1050 1130 1250 1160 x 2 935 1050 1160 x 2 950 845 935 950 630 615 845 885 560 530 615 630 530 560 13640 11280 13630 10455 17565 18400 17280 : Three enzyme haplotypes of A. pallipes. The letter désignations refer to single enzyme génotype in the order presented in table I. (Bam Hl does not eut the mtDNA). Tableau II : C o m p o s i t i o n des t r o i s h a p l o t y p e s o b t e n u s chez A. pallipes. L'ordre d e s l e t t r e s correspond à celui présenté dans le tableau I. (Bam Hl ne coupe pas l'ADNmt). Location Type Haplotype Crochatière AAAAA Crochatière / M a g o t BAAAA Pinail ABAAA Bull. Fr. Pêche Piscic. (1996) 343:175-182 — 179 — Figure 1 : Example of ethidium bromide coloration stained agarose gel of mtDNA digestion patterns of A. pallipes. On the right side, are given fragment sizes in Kilobase pairs (Kb) of Lambda-phage DNA digested by Hind III. Lanes : 1-2 = Hind III (patterns A and B, respectively), 3 = Hpa II (pattern A), 4 = Pst I, 5 = Xho I, 6 = Eco RI, 7-8 = Bam Hl, M = size standard. Figure 1 : Exemple d'un gel coloré au bromure d'éthidium montrant des profils de restriction obtenus après digestion enzymatique de l'ADNmt d ' A . pallipes. Sur la droite sont indiquées les t a i l l e s d e s f r a g m e n t s (kb) o b t e n u s après d i g e s t i o n par Hind III du marqueur de référence (ADN du phage Lambda). Lignes 1-2 : Hind III (profils A et B respectivement) ; 3 : Hpa II (profil A) ; 4 : Pst I ; 5 : Xho I ; 6 : Eco RI ; 7-8 : Bam Hl ; M : marqueur de taille. DISCUSSION Up t o date, no study has been carried out c o n c e r n i n g m t D N A diagnostic marker in p o p u l a t i o n genetics of freshwater crayfish. The establishment of a reliable m t D N A extraction m e t h o d in crayfish was indeed an essential a n d difficult step of our work. Papers, essentially p e r f o r m e d on marine crustaceans, related very t i m e - c o n s u m i n g m e t h o d s giving low yields of extraction ; in Panulirus argus, K O M M et al. (1982) o b t a i n e d only three restriction profiles using radiolabelled détection from m t D N A extracted by a c é s i u m chloride gradient. In our laboratory, Bull. Fr. Pêche Piscic. (1996) 343 :175-182 — 180 — w e have d e v e l o p e d a rapid extraction m e t h o d for Penaeus japonicus mtDNA, more suitable to p o p u l a t i o n g e n e t i c s s t u d i e s and w h i c h c o r r e s p o n d e d t o a modified version of alkaline lysis c o m m o n l y e m p l o y e d to extract p l a s m i d s ( B O U C H O N et al., 1994). Unfortunately, the m e t h o d is t o o d r a s t i c if it is applied t o freshwater crayfish. We p r o p o s e d here another rapid m e t h o d of e x t r a c t i o n of m t D N A especially a d a p t e d in crayfish. The m e t h o d involved using an a d a p t e d e x t r a c t i o n buffer (concentration of EDTA is relatively high c o m p a r e d to other buffers used in c r u s t a c e a n s ) a n d a spécifie lysis of mitochondrial m e m b r a n e s by NonidetP40. The use of this d é t e r g e n t w a s essentially m a d e for use w i t h molluscs (see BLOT ef al., 1990, in mussels and M U R R A Y ef al., 1 9 9 1 , in Partula) a n d in t h e crustacean Jasus (BRASHER ef al., 1992b), but its c o n c e n t r a t i o n w a s higher (from 1 t o 2 % ) . Our m e t h o d has permitted the use of six restriction e n z y m e s w i t h o u t the radiolabelled m e t h o d as used by K O M M et al. (1982), M e LEAN et al. (1983), S I L B E R M A N et al. (1994). The preliminary results presented here have p e r m i t t e d , firstly, the characterization of the size of m t D N A in A. pallipes (17750 ± 580 bp) and, secondly, to reveal a genetic variability b e t w e e n three p o p u l a t i o n s . The size of the mitochondrial g é n o m e in A. pallipes was that generally f o u n d in a n i m a i s a n d more particulary in Crustacea D e c a p o d a ( B O U C H O N et al., 1994). In France, generally, A. pallipes is f o u n d in the s a m e habitat that trout prêter (running water, rich in c a l c i u m a n d d i s s o l v e d o x y g e n , w i t h refuges) (LACHAT and LAURENT, 1987) as in the Crochatière and in t h e M a g o t . However, in t h e Pinail, A. pallipes was f o u n d in very small p o n d s (100 m2) with physical a n d c h e m i c a l c o n d i t i o n s very particular for this species. Physical a n d chemical m e a s u r e m e n t s , carried out this year in t h è s e p o n d s , have revealed very low rates of dissolved oxygen and calcium w i t h t e m p é r a t u r e s u p t o 2 9 ° C . In several freshwater d e c a p o d s , t h e discontinuous nature of h a b i t a t s b e t w e e n p o p u l a t i o n s w a s a s o u r c e of genetic divergence (HEDGECOCK ef al., 1976 ; F U L L E R a n d LESTER, 1980 ; A U S T I N , 1986 ; FEVOLDEN and HESSEN, 1989) although s o m e o t h e r s have s h o w n l o w inter-populations divergence (BUSACK, 1989 ; HORWITZ et al., 1990). In our c a s e , t h e l o w n u m b e r of s a m p l e d animais in this population d o not allow us to j u d g e if this g e n e t i c differentiation w a s d u e either t o a différence in t h e nature of habitat or t o the f o u n d e r effect. This s t u d y has revealed an intrapopulational genetic variability within the Crochatière. However, t h e t w o h a p l o t y p e s w e r e very similar a n d only differ from o n e another by a gain or loss of o n e restrictions site. T h e lack of genetic variation in Pinail and M a g o t c o u l d be explained by several m e a n s . B A R T O N a n d C H A R L E S W O R T H (1984) have s h o w e d that, at the p o p u l a t i o n level, natural levels of m t D N A diversity m a y be drastically r e d u c e d by either strong sélection pressures or a r é d u c t i o n in p o p u l a t i o n size. AVISE et al. (1988) s h o w e d that intrapopulational m t D N A diversifies are directly proportional t o effective sizes of females. In Pinail, it seems that the nature of t h e habitat limited the p o p u l a t i o n size (small surface, lack of hides, présence of several predators). T h e i m p a c t of t h e f o u n d e r effect c o u l d be as important as sélective pressures. However, t h e l o w n u m b e r of animais t a k e n for this analysis f r o m the Pinail and the low n u m b e r of restriction e n z y m e s t e s t e d c o u l d explain this lack of genetic variation in populations of w h i t e c l a w e d c r a y f i s h . A c c o r d i n g t o O ' C O N N E L L e f al. (1995), a s a m p l e of 2 5 - 3 0 individuals is n e e d e d f o r i n v e s t i g a t i n g m t D N A diversity in a population. In Pinail, only five crayfishes have been analysed. A m t D N A analysis is in progress o n a great n u m b e r of populations from Poitou-Charentes a n d will give or not a c o n f i r m a t i o n of the low levels of genetic variability of A. pallipes populations o n a régional scale. ACKNOWLEDGEMENTS We w o u l d like to t h a n k M. B R A M A R D , m e m b e r of the délégation régionale d u Conseil Supérieur d e la P ê c h e d u P o i t o u - C h a r e n t e s (C.S.R), f o r f i e l d assistance d u r i n g f i s h i n g opérations. This w o r k w a s s u p p o r t e d by financial support f r o m C.S.R Bull. Fr. Pêche Piscic. (1996) 343:175-182 — 181 REFERENCES A G E R B E R G A., 1990. Genetic variation in three species of freshwater crayfish, Astacus astacus L., Astacus leptodactylus A e s c h . a n d Pacifastacus leniusculus (Dana), revealed b y isozyme electrophoresis. Hereditas, 7 73, 101 -108. A L B R E C H T H., 1982. Das S y s t e m d e r e u r o p a i s c h e n Flusskrebse ( D e c a p o d a , Astacidae) : Vorschlag u n d B e g r u n d u n g . Mitt. Hamb. Zool. Mus. Inst., 79, 1 8 7 - 2 1 0 . A L B R E C H T H., V O N HAGEN H.O., 1 9 8 1 . Differential weighting of electrophoretic data in crayfish and fiddler c r a b s ( D e c a p o d a : Astacidae and Ocypodidae). Comp. Biochem. Physiol., 70B, 3 9 3 - 3 9 9 . ATTARD J . , VIANET R., 1985. Variabilité génétique et m o r p h o l o g i q u e d e c i n q populations d e l'écrevisse e u r o p é e n n e Austropotamobius pallipes ( L e r e b o u l l e t , 1858) (Crustacea, Decapoda). Can. J. Zool., 63, 2 9 3 3 - 2 9 3 9 . A U S T I N C M . , 1986. Electrophoretic a n d morphological systematic s t u d i e s of t h e g e n u s Cherax (Decapoda : Parastacidae) in Australia. Ph.D. Thesis, University of Western Australia. AVISE J . C , 1985. Identification a n d interprétation of mitochondrial DNA s t o c k s in marine species. In H.E. Kumpf, R.N. Vaught, C.B. Grimes, A . G . J o h n s o n a n d E.L. Naakamura, Eds, Proceedings of S t o c k Identification W o r k s h o p , 105-136. AVISE J . C , A R N O L D J . , B A L L R.M., B E R M I N G H A M E., L A M B T., NEIGEL J.E., REEB C.A., S A U N D E R S N . C , 1987. Intraspecific p h y l e o g e o g r a p h y : the m i t o c h o n d r i a l D N A bridge between population g e n e t i c s a n d systematics. Annu. Rev. Ecol. Syst, 18, 489-522. AVISE J . C , B A L L R.M., A R N O L D J . , 1988. Current versus historical population sizes in vertebrate species w i t h high gene f l o w : a c o m p a r i s o n based on m i t o c h o n d r i a l DNA lineages a n d inbreeding theory for neutral m u t a t i o n s . Mol. Biol. Evol., 5, 331 - 3 4 4 . B A R T O N N.H., C H A R L E S W O R T H B., 1984. Genetic révolutions, f o u n d e r effects a n d speciation. Annu. Rev. Ecol. Syst, 15, 133-164. B L O T M., LEGENDRE B., A L B E R T P., 1990. Restriction f r a g m e n t length p o l y m o r p h i s m of mitochondrial DNA in subantarctic mussels. J. Exp. Mar. Biol. Ecol., 141, 7 9 - 8 6 . B O U C H O N D., SOUTY-GROSSET C , R A I M O N D R., 1994. M i t o c h o n d r i a l DNA variation a n d markers of species identity in t w o penaeid s h r i m p s p e c i e s : Penaeus monodon Fabricius and P. japonicus Bate. Aquaculture, 127, 131-144. BRASHER D.J., OVENDEN J.R., B O O T H J.D., WHITE R.W.G., 1992a. Genetic subdivision of Australian a n d N e w Zealand populations of Jasus verreauxi ( D e c a p o d a : Palinuridae)preliminary évidence f r o m the mitochondrial g é n o m e . New Zealand J. Mar. Freshwater Res., 26, 5 3 - 5 8 . B R A S H E R D.J., O V E N D E N J.R., W H I T E R.W.G., 1 9 9 2 b . M i t o c h o n d r i a l D N A variation a n d phylogenetic relationships of Jasus s p p . J. Zool. Lond., 227, 1-16. B R O W N K., 1980. L o w genetic variability and high similarities in the crayfish gênera a n d Procambarus. Am. Midi. Nat, 105, 2 2 5 - 2 3 2 . Cambarus B R O W N W.M., GEORGE M., W I L S O N A . C , 1979. Rapid évolution of animal m i t o c h o n d r i a l DNA. Proc. Nat. Acad. Sci. USA., 1985, 76, 1 9 6 7 - 1 9 7 1 . B U S A C K C.A., 1988. Electrophoretic variation in the red s w a m p (Procambarus clarkii) a n d white river crayfish (P acutus) ( D e c a p o d a : Cambaridae). Aquaculture, 69, 211 - 2 2 6 . B U S A C K C.A., 1 9 8 9 . B i o c h e m i c a l s y s t e m a t i c s of c r a y f i s h e s of t h e g e n u s Procambarus, s u b g e n u s Scapulicambarus ( D e c a p o d a : C a m b a r i d a e ) . J.N. Am. Benthol. Soc, 8, 180-186. FEVOLDEN S.E., HESSEN D.O., 1989. Morphological and genetic différences a m o n g recently f o u n d e d populations of noble crayfish (flstacus astacus). Hereditas, 110, 149-158. Bull. Fr. Pêche Piscic. (19%) 343:175-182 — 182 — F U L L E R B., LESTER L.J., 1980. Corrélations of allozymic variation with habitat parameters using t h e g r a s s shrimp, Palaemonetes pugio. Evolution, 34, 1 0 9 9 - 1 1 0 4 . G R O O M B R I D G E B., 1994. I.U.C.N. Red list of threatened animais. 286 p. H E D G E C O C K D., SHLESER R.A., N E L S O N K., 1976. A p p l i c a t i o n s of biochemical genetics t o a q u a c u l t u r e . J. Fish. Res. Board Can., 33, 1108-1119. H O R W I T Z P., A D A M S M . , B A V E R S T O C K P., 1 9 9 0 . E l e c t r o p h o r e t i c c o n t r i b u t i o n s t o t h e s y s t e m a t i c s of t h e f r e s h w a t e r c r a y f i s h g e n u s Engaeus Erichson (Decapoda : Parastacidae). Invert. Taxon, 4, 6 1 5 - 6 4 1 . K O M M B., M I C H A E L S A., T S O K O S J . , LINTON J . , 1982. Isolation and characterization of the m i t o c h o n d r i a l DNA f r o m t h e Florida spiny lobster, Panulirus argus. Comp. Biochem. Physiol., 73b, 9 2 3 - 9 2 9 . L A C H A T G., L A U R E N T P. J . , 1987. The habitats of Astacus in t h e M o r v a n . Freshwater crayfish, 7, 61-68. astacus a n d Austropotamobius M c L E A N M., O K U B O C.K., T R A C E Y M.L., 1983. M t D N A heterogeneity in Panulirus Experientia, 39, 5 3 6 - 5 3 8 . pallipes argus. M O R I T Z C , D O W L I N G T.E., B R O W N W . M . , 1987. Evolution of animal mitochondrial DNA : relevance for p o p u l a t i o n b i o l o g y and systematics. Ann. Rev. Ecol. Syst., 18, 2 6 9 - 2 9 2 . M U R R A Y J . , STINE O.C., J O H N S O N M.S., 1991. The évolution of mitochondrial DNA in Partula. Heredity, 66, 9 3 - 1 0 4 . N E M E T H S T . , TRACEY M.L., 1979. Allozyme variability and relatedness in six crayfish species. Heredity, 70, 3 7 - 4 3 . O ' C O N N E L L M., SKIBINSKI D.O.F., B E A R D M O R E J.A., 1995. M i t o c h o n d r i a l DNA a n d allozyme variation in atlantic s a l m o n (salmo salar) p o p u l a t i o n s in Wales. Can. J. Fish. Aquat. Sci., 52, 1 7 1 - 1 7 8 . O V E N D E N J.R., 1990. M i t o c h o n d r i a l DNA and marine s t o c k assessment : a review. Aust. J. Mar. Freshwater Res., 41, 8 3 5 - 8 5 3 . O V E N D E N J.R., BRASHER D.J., W H I T E R.W.G., 1992. M i t o c h o n d r i a l D N A analyses of t h e red r o c k lobster Jasus edwardsii supports a n apparent a b s e n c e of population subdivision t h r o u g h o u t Australia. Mar. Biol., 112, 319-326. S I L B E R M A N J . D . , SARVER S.K., W A L S H P.J., 1994. Mitochondrial DNA variation and population s t r u c t u r e in the spiny lobster Panulirus argus. Mar. Biol., 120, 601 - 6 0 8 . S M I T H P.J., M e KO Y J.L., M A C H I N P.J., 1980. Genetic variation in the rock lobsters Jasus edwardsii and J. novaehollandiae. New Zealand J. Mar. Freshwater Res., 14, 5 5 - 6 3 . V I G N E U X E., KEITH P., N O Ë L P., 1993. Atlas préliminaire d e s C r u s t a c é s D é c a p o d e s d'eau d o u c e d e France. Coll. Patrimoines Naturels, vol. 14, S.F.F., B.I.M.M.-M.N.H.N., C.S.R, M i n . Env., Paris, 55 p. W E S T M A N K., 1985. E f f e c t s of h a b i t a t m o d i f i c a t i o n o n f r e s h w a t e r c r a y f i s h . In : H a b i t a t m o d i f i c a t i o n s a n d F r e s h w a t e r Fisheries, J.S. A l a b a s t e r é d . , B u t t e r w o r t h s , L o n d o n , 245-255. W I L S O N A . C . , C A N N R.L., CARR M.G., GYLLENSTEN U.B., H E L M - B Y C H O W S K I M., HIGUSHI R.G., P A L U M B I S.R., PRAGER E.M., SAGE R.D., S T O N E K I N G M., 1985. Mitochondrial D N A a n d t w o p e r s p e c t i v e s on evolutionary genetics. Biol. J. Linn. Soc, 26, 3 7 5 - 4 0 0 . Z W A N E N B U R G K.C.T., B E N T Z E N P., WRIGHT J . M . , 1992. Mitochondrial DNA differentiation in w e s t e r n North Atlantic p o p u l a t i o n s of Haddock (Melanogrammus aeglefinus). Can. J. Fish. Aquat. Sci., 49, 2 5 2 7 - 2 5 3 7 .
© Copyright 2026 Paperzz