Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips Hossein M. Bernety and Alexander B. Yakovlev Department of Electrical Engineering Center for Applied Electromagnetic Systems Research (CAESR) University of Mississippi 2014 International Conference on Electromagnetic in Advanced Applications ICEAA 2014, Aruba 1 Outline Introduction and Motivation Mantle Cloaking Formulation and Theory Wave Equation and Mathieu Functions Formulation of the Scattering Problem Optimum Required Reactance Analytical and Full-wave Simulation Results Dielectric Elliptical Cylinders at Microwave and Terahertz Frequencies PEC Elliptical Cylinders at Microwave and Terahertz Frequencies Strip as a Degenerated Ellipse Conclusions H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 2 Cloaking Methods I Cloak Transformation Optics Manipulation of electromagnetic energy flow Light Rays Distorting the ray path by using bulk metamaterials Object J. B. Pendry et. al., “Controlling electromagnetic fields,” Science 312, 1780-1782, 2006. Plasmonic Method Based on scattering cancellation Homogeneous and isotropic materials Low or negative index materials Suppression of the dominant mode Uncloaked Cloaked A. Alu et.al., “Achieving transparency with plasmonic and metamaterial coatings”, Phys. Rev. E. 72, 016623, 2005. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 3 Cloaking Methods II Mantle Cloaking Metasurface Mantle Cloaks Based on scattering cancellation An ultrathin metasurface Anti-phase surface currents Suppression of the dominant mode Electric field distributions Uncloaked Cloaked A. Alu, “Mantle cloak: Invisibility induced by a surface”, Phys. Rev. B. 80, 245115, 2009. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 4 1-D and 2-D Periodic Structures r r w E D E Mesh Grids Vertical Strips PEC PEC g E E D Capacitive Rings Patch Arrays Y. R. Padooru et.al., J. Appl. Phys. , vol. 112, pp. 0349075, 2012. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 5 Mantle Cloaking using Graphene The thinnest possible mantle cloak Large tunability Applicable for low terahertz (THz) frequencies Planar Structure Dielectric Cylinder P. Y. Chen and A. Alú, “Atomically thin surface cloak using graphene monolayers”, ACS NANO, vol. 5, no. 7, pp. 5855-5863, 2011. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 6 Graphene Nanopatches Graphene monolayer provides inductive surface impedance A conducting object needs capacitive surface impedance to be cloaked To resolve this issue, a patterned graphene metasurface is proposed, which owns dual capacitive/inductive inductance and can be used to cloak both dielectric and conducting objects r PEC : surface resistance per unit cell : surface reactance per unit cell : periodicity size : gap size : relative permittivity of the dielectric cylinder or the spacer Y. R. Padooru et.al., “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies”, Phys. Rev. B, vol. 87, pp. 115401, 2013. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 7 Cloaking using Graphene Nanopatches Dielectric Cylinder PEC Cylinder P. Y. Chen et. al, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New. J. Phys., vol. 15, pp. 123029, 2013. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 8 Elliptical Cloak Designs at Microwaves r E H r PEC E H E H r PEC E H c H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 9 Elliptical Cloak Designs at THz Frequencies H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 10 Scattering from Strips by Mathieu Functions H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 11 Elliptical Coordinate System Focus Scale factors : represents an ellipse : represents a hyperbola H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 12 Mathieu Equation Two-dimentional Helmholtz Equation: where: Using the method of separation of variables we have: Radial Mathieu Equation Angular Mathieu Equation The radial Mathieu equation has four kinds of solution as: The angular Mathieu equation has the solution as: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” p, m can be even or odd ICEAA 2014, Aruba 13 Formulation of the Scattering Problem Incident Electric Field Scattered Electric Field Incident Magnetic Field Scattered Magnetic Field Transmitted Electric Field Transmitted Magnetic Field H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 14 Boundary Conditions By applying boundary conditions : Sheet Impedance Boundary Condition H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 15 Matrix Equation for Coefficients Now, we apply the orthogonality property of angular Mathieu function as below: After some manipulation we come to the matrix equation below: Then, unknown coefficients are found H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 16 Bistatic Scattering Width To find the scattered field for farfield region, we use the asymptotic form of the radial Mathieu function and we have: It has already been found by solving the matrix equation The two-dimensional bistatic cross section is defined as: Finally, we have: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 17 Optimum Reactance in terms of Observation Angle To find the optimum reactance versus observation angle, we solve the matrix equation for the dominant scattering mode and require Finally the optimum required reactance versus observation angle can be found as: With the same approach we can find the optimum required reactance versus observation angle for the dielectric elliptical cylinder as: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 18 Optimum Required Reactance PEC Dielectric H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 19 Quasi-static Closed-form Condition In the quasi-static limit( ), the closed-form condition for a PEC elliptical cylinder under TM-polarized illumination can be derived as: And also, the closed-form condition for a dielectric elliptical cylinder under TM-polarized illumination can be derived as: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 20 Surface Reactance Frequency Dispersion Frequency dispersion of the surface reactance for graphene monolayer and nanopatches with respect to the optimum required is found as: Required Reactance for Dielectric Required Reactance for PEC Required Reactance for Strip H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 21 Surface Conductivity of Graphene Kubo Formula Intraband Contributions Interband Contributions Zs 1 : charge of electron : angular frequency : chemical potential : temperature : energy : reduced Planck’s constant : momentum relaxation time G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene”, J. Appl. Phys., vol. 103, pp. 064302, 2008. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 22 Dielectric Elliptical Cylinder at THz Frequencies Geometry parameters are: The required reactance is found to be: The design parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 23 Power Flow and Far-field Pattern Uncloaked Cloaked f= 3 THz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 24 Electric Field Distribution Uncloaked f= 3 THz Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 25 Closely Spaced and Overlapping Dielectric Elliptical Cylinders Uncloaked Cloaked l= 50 µm f= 3 THz Uncloaked Cloaked l= 48 µm H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 26 Cluster of Dielectric Elliptical Cylinders I Uncloaked l= 50 µm= 0.5 λ Cloaked g= 3 µm Uncloaked Cloaked f= 3 THz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 27 Cluster of Dielectric Elliptical Cylinders II Uncloaked Cloaked g= 3 µm Uncloaked Cloaked f= 3 THz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 28 Overlapping of Dielectric Elliptical Cylinders Uncloaked Cloaked l= 140 µm= 1.4 λ f= 3 THz Uncloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” Cloaked ICEAA 2014, Aruba 29 Dielectric Elliptical Cylinder at Microwave Frequencies Geometry parameters are: r N= 8 E H The required reactance is found to be: The design parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 30 Dielectric Elliptical Cylinder at Microwave Frequencies Geometry parameters are: r E H The required reactance is found to be: The design parameters are: N= 3 N= 8 N= 3 N= 8 H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 31 Electric Field Distribution Uncloaked N= 8 r f= 3 GHz Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 32 Dielectric Elliptical Cylinder at THz Frequencies Geometry parameters are: The required reactance is found to be: The design parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 33 PEC Elliptical Cylinder at THz Frequencies Geometry parameters are: The required reactance is found to be: The design parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 34 Electric Field Distribution Uncloaked f= 3 THz Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 35 PEC Elliptical Cylinder at Microwave Frequencies Geometry parameters are: PEC E H The required reactance is found to be: The design parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 36 2-D Metasurface Cloak for PEC at Microwaves PEC E Geometry parameters are: H The required reactance is found to be: The design parameters are: N= 10 c H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 37 Power Flow and Far-field Pattern Uncloaked Cloaked c N= 10 f= 3 GHz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 38 Electric Field Distribution Uncloaked PEC c f= 3 GHz Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 39 Strip (Degenerated Ellipse) A strip can be modeled as a degenerated ellipse Geometry parameters are: H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 40 Power Flow and Far-field Pattern Uncloaked Cloaked f= 3 THz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 41 Electric Field Distribution Uncloaked Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 42 Cloaking for Two Strips Uncloaked Cloaked f= 3 THz H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 43 Two Strips Horizontally Oriented f= 3 THz Uncloaked Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 44 Two Strips with Overlapping Cloaks Uncloaked Cloaked f= 3 THz g= 3.7 µm Uncloaked Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 45 Two Connected Strips Uncloaked Cloaked Uncloaked f= 3 THz Cloaked H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 46 Conclusions An analytical approach has been proposed to cloak elliptical cylinders, and also, strips at microwave and low-THz frequencies by using conformal mantle cloak designs. Although the electromagnetic wave scattering of an elliptical cylinder is pertinent to the angle of incidence, it is shown that the cloak design is robust for any incident angle. The idea has been extended to different geometries such as clusters of dielectric elliptical cylinders and various cases of strips. H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 47 Conclusions Challenges for future work??? , …... H. M. Bernety and A. B. Yakovlev , “Metasurface Cloaks for Dielectric and Metallic Elliptical Cylinders and Strips” ICEAA 2014, Aruba 48
© Copyright 2026 Paperzz