Strategies for Stereocontrolled Synthesis Chemistry 5.511 Synthetic Organic Chemistry II Lecture 4 October 12, 2007 Rick L. Danheiser Massachusetts Institute of Technology Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies " What determines the relative E of stereoisomers " Tactics for establishing thermodynamic control O S HO N O O OH O epothilone A Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies " What determines the relative E of stereoisomers " Tactics for establishing thermodynamic control ! Kinetic control strategies " Substrate control strategies " Reagent control strategies " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies ! Kinetic control strategies " Substrate control strategies # Steric approach control # Stereoelectronic control # Internal stereodirection and chirality transfer " Reagent control strategies # Achiral substrate: enantiotopic face selectivity # Achiral substrate: enantiotopic group selectivity # Chiral substrate: double asymmetric synthesis " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis Substrate Kinetic Control Strategies Steric Approach Control m-CPBA CH2Cl2 O Strategies for Stereocontrolled Synthesis Substrate Kinetic Control Strategies Cyclohexane A Values (kcal/mol) F Cl Br I 0.25-0.42 0.53-0.64 0.48-0.67 0.47-0.61 OMe OAc OSiMe3 0.55-0.75 0.68-0.87 0.74 NH2 NMe2 1.23-1.7 1.5-2.1 CH3 Et i-Pr t-Bu Vinyl Ethynyl Ph 1.74 1.70 2.21 4.7-4.9 1.5-1.7 0.41-0.52 2.8 CN CHO CH2OH COMe CO2Me 0.2 0.56-0.8 1.76 1.0-1.5 1.2-1.3 SiMe3 2.5 Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies ! Kinetic control strategies " Substrate control strategies # Steric approach control # Stereoelectronic control # Internal stereodirection and chirality transfer " Reagent control strategies # Achiral substrate: enantiotopic face selectivity # Achiral substrate: enantiotopic group selectivity # Chiral substrate: double asymmetric synthesis " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis Substrate Kinetic Control Strategies Non-covalent internal stereodirection Z Z m-CPBA benzene R' R' O R' H H H H OH Z H OH OMe OAc H Rel. Rate 1.0 0.55 0.067 0.046 0.42 Major Product syn (10:1) anti anti (20:80) ca. 1 : 1 H. B. Henbest and R. A. Wilson J. Chem. Soc. 1959, 1958 Review on “Substrate Directable Reactions” Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307 Strategies for Stereocontrolled Synthesis Substrate Kinetic Control Strategies Chirality Transfer CH3C(OEt)3 cat. EtCO2H 140 °C OEt HO O (via (via Lis-BuBH LAH reduction) 3 reduction) CO2Et Johnson Orthoester Claisen Rearrangement See Langlois, Y. In The Claisen Rearrangement, Hiersemann, M.; Nubbemeyer, U., Eds.; Wiley-VCH, 2007, pp 301-366 Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies ! Kinetic control strategies " Substrate control strategies # Steric approach control # Stereoelectronic control # Internal stereodirection and chirality transfer " Reagent control strategies # Achiral substrate: enantiotopic face selectivity # Achiral substrate: enantiotopic group selectivity # Chiral substrate: double asymmetric synthesis " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Achiral Substrate: Enantiotopic Face Selectivity Katsuki-Sharpless Asymmetric Epoxidation Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Katsuki-Sharpless Asymmetric Epoxidation Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Achiral Substrate: Enantiotopic Face Selectivity Katsuki-Sharpless Asymmetric Epoxidation OH t-BuOOH, Ti(Oi-Pr)4 (-)-DET, CH2Cl2 OH O 92% ee (96 : 4) Reviews on Asymmetric Epoxidation "C atalytic Asymmetric Ep oxidation of Allylic Alcohols" Johnson, R. A.; Sharp less, K. B. In C atalytic Asymmetric Synthesis; Ojima, I., Ed.; W iley-VC H, 2000, p p 231-285 "Asymmetric Ep oxidation of Unfunctionalized Olefins and Related Reactions" Katsuki, T. In C atalytic Asymmetric Synthesis; Ojima, I., Ed.; W iley-VC H, 2000, p p 287-326. "Asymmetric Ep oxidation of Allylic Alcohols: The Katsuki-Sharp less Ep oxidation Reaction", Katsuki, T.; Martin, V. S. Org. Reactions 1996, 48, 1. Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Katsuki-Sharpless Asymmetric Epoxidation OH t-BuOOH, Ti(Oi-Pr)4 (-)-DET, CH2Cl2 OH O ! Reaction can be run as a stoichiometric (100 mol%) or catalytic (5-10 mol%) process ! For high enantioselectivities use excess of tartrate ligand (5% Ti and 6% tartrate) ! Catalytic reactions can be run up to 1.0 M in concentration; stoichiometric at 0.1 M ! TBHP should be as concentrated as possible (commercial 5.5 M preferred to 3.0 M) ! Use of activated molecular sieves greatly expanded the catalytic version Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Katsuki-Sharpless Asymmetric Epoxidation t-BuOOH, Ti(Oi-Pr)4 (-)-DET, CH2Cl2 OH OH O Compatible Functional Groups Acetals, ketals Nitriles Acetylenes Nitro Alcohols (remote) Olefins Aldehydes Pyridines Amides Silyl ethers Azides Sulfones Carboxylic Esters Sulfoxides Epoxides Tetrazoles Ethers Ureas Hydrazides Urethanes Ketones Incompatible Groups Amines (most) Carboxylic acids Mercaptans Phenols (most) Phosphines Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Achiral Substrate: Enantiotopic Face Selectivity Katsuki-Sharpless Asymmetric Epoxidation Chiral Substrates OH t-BuOOH, Ti(Oi-Pr)4 (-)-DET, CH2Cl2 OH O OH t-BuOOH, Ti(Oi-Pr)44 (-)-DET, CH22Cl22 OH Am Am Am Am 92% ee (96 : 4) OH Am t-BuOOH, Ti(Oi-Pr)4 (-)-DET, CH2Cl2 OH Am OH + O 67 : 33 Am O O Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Achiral Substrate: Enantiotopic Group Selectivity Review on enzymatic enantioselective group desymmetrization: V. Gotor Chem. Rev. 2005, 105, 313 Lipase-Based Desymmetrization Reactions OAc OAc PPL MeO2C CO2Me NHCO2Bn 60% 100%ee OAc OH CO2Me HO2C CO2Me NHCO2Bn M. Ohno J. Am. Chem. Soc. 1981, 103, 2405 J. Nokami Tetrahedron Lett. 32, 2409, 1991 CO2Me PLE 93% 96%ee PLE 98% 96%ee Baker's yeast sucrose H2O O CO2H CO2Me O 47-52% 96-98.8% ee O OH K. Mori and H. Mori Org. Synth. Coll. Vol. 8, 312, 1993 M. Ohno Tetrahedron Lett. 1984, 25, 2557 Another example of biotransformations in asymmetric synthesis Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Achiral Substrate: Enantiotopic Group Selectivity Coupled to Kinetic Resolution BnO Li 1) HCO2Me 2) RedAl OH OH OBn OBn OBn OH O A OBn OBn 70-80% OBn OBn OH O ent-B OBn 1 h 93% ee 44 h >97% ee OH O B O OBn >97% de ( [A + ent-A]/[B + ent-B] ) S. L. Schreiber J. Am. Chem. Soc. 1987, 109, 1525 OH AE (-)-DIPT OBn OBn O ent-A OBn Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies ! Kinetic control strategies " Substrate control strategies # Steric approach control # Stereoelectronic control # Internal stereodirection and chirality transfer " Reagent control strategies # Achiral substrate: enantiotopic face selectivity # Achiral substrate: enantiotopic group selectivity # Chiral substrate: double asymmetric synthesis " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis O O OH Ti(OiPr)4 O O TBHP Ph O OH O Ph O O OH O 2.3 : 1 Ti(OiPr)4 TBHP (+)-DET O + OH OH O + 99 : 1 Ph O OH O Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis O O OH Ti(OiPr)4 TBHP O O O “mismatched” O OH Ti(OiPr)4 TBHP OH O 1 : 22 calcd (1 : 43) O O OH O (-)-DET “matched” Selectivity Benchmarks O O (+)-DET O + OH + O O 90 : 1 OH O Useful selectivity Double asymmetric synthesis (227 : 1) 91:9 (10:1) 98:2 (50:1) Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis "What changes may organic synthesis undergo? . . . . With appropriate chiral reagents and catalysts at hand, the synthetic design of many natural (and unnatural) products will become straightforward, and as a result some of the aesthetic elements of traditional organic synthesis, as exemplified by the synthesis of erythronolide A in Section 7, may well be lost. . . . . However, the power of the new strategy has already made possible what appeared to be almost impossible even a few years ago. In this sense a new era which is characterized by the evolution from substrate-controlled to reagent-controlled organic synthesis is definitely emerging." S. Masamune et al., "Double Asymmetric Synthesis and a New Strategy for Stereochemical Control in Organic Synthesis", Angew. Chem. Int. Ed. 1985, 24, 1. Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis Comparison of Substrate and Reagent Control Strategies “ . . . . Less commendable is the use of this insightful new chemistry as a platform for offering futuristic and murky pontifications about “reagent control” vs. “substrate control” as strategic frameworks in stereospecific synthesis. In the opinion of this reader, the substantive importance of this distinction has been vastly overstated. Clearly in many instances so-called substrate control works very well. In other cases, where the stereochemical connectivity between the “in place” stereogenicity, and the stereogenicity to be created is tenuous, recourse to so-called “reagent control” may be the only solution. To debate, as an abstract matter, the general superiority of one method over the other is not unlike debating whether steamship transportation or rail transportation is the more effective. Obviously, this is a type of circumstancedependent question which does not permit a general resolution. It must be handled on a case-to-case basis by sensible people.” Samuel Danishefsky C&EN August 26, 1985 Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis Comparison of Substrate and Reagent Control Strategies Advantages Disadvantages Substrate Control ! Exploits resident chirality Reagent Control ! Same strategy sometimes applicable to synthesis of both epimers ! Not applicable if substrate has strong bias ! Applicable to substrates with low bias ! Requires reagents with very strong bias ! Requires strong bias in substrate ! Different strategy needed for each epimer Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis Comparison of Substrate and Reagent Control Strategies OH O CH3MgBr CH3 Strategies for Stereocontrolled Synthesis Reagent Kinetic Control Strategies Chiral Substrate: Double Asymmetric Synthesis Comparison of Substrate and Reagent Control Strategies O 1) Ph3P=CH2 2) m-CPBA 3) LiAlH4 CH3 OH Strategies for Stereocontrolled Synthesis ! Thermodynamic control strategies ! Kinetic control strategies " Substrate control strategies # Steric approach control # Stereoelectronic control # Internal stereodirection and chirality transfer " Reagent control strategies # Achiral substrate: enantiotopic face selectivity # Achiral substrate: enantiotopic group selectivity # Chiral substrate: double asymmetric synthesis " Dynamic kinetic resolution Strategies for Stereocontrolled Synthesis Kinetic Control Strategies Classical Kinetic Resolution B*chiral A + ent-A k1 FAST A-B* B*chiral k2 SLOW ent-A-B* Strategies for Stereocontrolled Synthesis Kinetic Control Strategies Classical Kinetic Resolution B*chiral A + ent-A k1 FAST A-B* B*chiral k2 SLOW ent-A-B* Strategies for Stereocontrolled Synthesis Kinetic Control Strategies Classical Kinetic Resolution B*chiral k1 FAST A-B* ent-A s = k1/k2 10 B*chiral k2 SLOW Selectivity Factor ent-A-B* 50 Strategies for Stereocontrolled Synthesis Kinetic Control Strategies Dynamic Kinetic Resolution B*chiral A FAST ent-A FAST A-B* B*chiral SLOW ent-A-B* Review: H. Pellissier Tetrahedron 2003, 59, 8291 Strategies for Stereocontrolled Synthesis General Strategies for the Stereocontrolled Synthesis of Acyclic Target Molecules " Chiron Approach " Ring Template Approach " Chirality Transfer " Acyclic Asymmetric Synthesis Strategies for Stereocontrolled Synthesis ! Thermodynamic Control Strategies ! Kinetic Control Strategies ! Strategies for the Synthesis of Acyclic Target Molecules: Case Studies " Prostaglandins from Sugars (Stork) Strategies for Stereocontrolled Synthesis General Strategies for the Stereocontrolled Synthesis of Acyclic Target Molecules " Chiron Approach " Ring Template Approach " Chirality Transfer " Acyclic Asymmetric Synthesis Strategies for Stereocontrolled Synthesis Case Studies (2) Prostaglandins from Sugars (Stork) OH O CO2H CO2H 9 8 11 HO 12 13 OH Prostaglandin A2 6 5 14 15 OH Prostaglandin F2! G. Stork and S. Raucher J. Am. C hem. Soc. 1976, 98, 1583 G. Stork, T. Takahashi, I. Kawamoto, and T. Suzuki J. Am. C hem. Soc. 1978, 100, 8272 For discussions of the use of chiral natural p roducts as starting materials for the synthesis of comp lex molecules, see (1) S. Hanessian "Total Synthesis of Natural Products: The 'C hiron Ap p roach' ", Pergamon Press: Oxford, 1983. (2) T.-L. Ho "Enantioselective Synthesis: Natural Products from C hiral Terp enes", W iley Interscience: New York, 1992. Strategies for Stereocontrolled Synthesis Case Studies (2) Prostaglandins from Sugars (Stork) G. Stork and S. Raucher J. Am. C hem. Soc. 1976, 98, 1583 G. Stork, T. Takahashi, I. Kawamoto, and T. Suzuki J. Am. C hem. Soc. 1978, 100, 8272 Strategies for Stereocontrolled Synthesis Case Studies (2) Prostaglandins from Sugars (Stork) OH CO2H 9 8 11 HO 12 13 6 14 5 15 OH Prostaglandin F2! Strategies for Stereocontrolled Synthesis Case Studies O (2) Prostaglandins from Sugars (Gilbert Stork) CO2H OH ! Install C-8 side chain by enolate alkylation ! Thermodynamic control of stereochemistry at C-8 O CO2R X R1 Prostaglandin A2 Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 12 HO 14 13 5 15 OH Prostaglandin F2! ! Install C-8 side chain by enolate alkylation ! Thermodynamic control of stereochemistry at C-8 ! [For PGF2!] C-9 stereochemistry by steric approach substrate control O H CO2R X RO O R2 R1 1 R Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 HO 12 13 14 5 15 OH Prostaglandin F2! ! Form cyclopentanone from acyclic precursor by nucleophilic cyclization X O EWG R2 12 New Subtargets O X R2 12 RO R1 R1 umpolung CO2R (R2) RO2C or CO2R (R2) Am 12 OR X Am 12 OR OR Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 12 HO 13 14 5 15 OH Prostaglandin F2! ! The “sugar connection”: requires translation of C-OH stereogenic centers into C-C centers CO2R (R2) New Subtargets RO2C CO2R (R2) Am 12 X OR OR OH HO Am 12 OH Sugars as starting materials C H OR n Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 HO 12 13 14 5 15 OH ! Set C-12 stereochemistry by Prostaglandin F2! chirality transfer via [3,3] sigmatropic rearrangement CO2R (R2) Subtargets RO2C Am 12 X OR Z (R) ! $ # (R) Am 12 OR OR Z O " CO2R (R2) O OH " $ # Retron for [3,3] sigmatropic shift: #,$-unsaturated carbonyl compound Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 11 12 HO 13 6 14 5 15 OH ! Set C-12 stereochemistry by Prostaglandin F2! chirality transfer via [3,3] sigmatropic rearrangement CO2R (R2) Previous subtargets RO2C Am 12 X OR New Subtargets CO2R (R2) Am 12 OR OR OH OH 12 12 Am RO2C Am X OR OR OR Strategies for Stereocontrolled Synthesis Case Studies (2) Prostaglandins from Sugars (Gilbert Stork) ! Set C-12 stereochemistry by chirality transfer via [3,3] sigmatropic rearrangement top face attack H H COZ H Z R1 O OH R1 H Z R2 R1 R2 O R1 R2 R2 bottom face attack Z R2 Z R1 O R2 H H O H R1 COZ R2 H R1 Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 12 HO 13 5 14 15 OH ! Set C-12 stereochemistry by Prostaglandin F2! chirality transfer via [3,3] sigmatropic rearrangement CO2R (R2) Previous subtargets RO2C CO2R (R2) Am 12 X Am 12 OR OR OR OH New Subtargets OH 12 12 Am RO2C Am X OR OR OR Strategies for Stereocontrolled Synthesis Case Studies O CO2H (2) Prostaglandins from Sugars (Stork) OH For PGA2 OH RO2C OR2 [3,3] 12 12 Am " OR2 Am # OR OH L-erythrose Am OHC OR1 OR1 OR2 OH OHC OH OH Prostaglandin A2 + OHC Bu2CuLi OTs 1 OR Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Gilbert Stork) CO2H 9 8 6 11 12 HO 13 5 14 15 OH For PGF2! OH OH Am X OR Prostaglandin F2! OR Am RO OR OR 1,2-deoxygenation OH OR (both ! or ") R1O OR2 OR1 OH OH OR1 OH OH HO D-Glycero-D-guloheptono-1,4-lactone One step from D-glucose OR1 OH OH O O Strategies for Stereocontrolled Synthesis Case Studies O CO2H (2) Prostaglandins from Sugars (Stork) Total Synthesis of PGA2 O HO O H2C=CHMgCl THF-CH2Cl2 0° 4 h O O OH O ClCO2Me pyr, -30!0° OH 96% OH Prostaglandin A2 OCO2Me OH O O 10 eq CH3C(OMe)3 cat EtCO2H 140° 72 h OH O 25% aq AcOH 120° 1 h MeO2C OCO2Me OH MeO2C OCO2Me 83% O Strategies for Stereocontrolled Synthesis Case Studies O CO2H (2) Prostaglandins from Sugars (Stork) Total Synthesis of PGA2 OH Prostaglandin A2 OH 1 eq Et3N CH2Cl2 rt 1 h MeO2C OCO2Me OH OH MeO2C O O O 0.1 eq K2CO3 MeOH rt 30 min xyl 160° 1 h 2 eq 59% overall (MeO)3C MeO2C 1:1 CO2Me H MeO2C OH H OH CO2Me Strategies for Stereocontrolled Synthesis Case Studies O CO2H (2) Prostaglandins from Sugars (Stork) Total Synthesis of PGA2 MeO2C 1:1 CO2Me H MeO2C OH 1) H2, Pd-BaSO4 MeOH 2) TsCl, pyr -20° 7 d 3) EVE OH H Prostaglandin A2 MeO2C CO2Me H MeO2C OH OTs OCH(Me)OEt 79% 5 eq Bu2CuLi Et2O -40° 2 h O CO2H 0.5 N NaOH ! 10 min Am 77% OCH(Me)OEt 10 eq KOt-Bu THF rt 45 min MeO2C H MeO2C CO2Me Am OCH(Me)OEt 67% Strategies for Stereocontrolled Synthesis Case Studies O CO2H (2) Prostaglandins from Sugars (Stork) Total Synthesis of PGA2 OH Prostaglandin A2 O O 4 eq NaIO4 MeOH rt 2.2 eq LDA THF 3 eq PhSeCl CO2H Am CO2H H3O+ Am OH OCH(Me)OEt Prostaglandin A2 16 steps in the longest linear sequence Strategies for Stereocontrolled Synthesis Case Studies OH (2) Prostaglandins from Sugars (Stork) CO2H 9 8 6 11 12 HO 13 14 Total Synthesis of PGF2! OH O HO HO HO OH 10 HCN HO 11 12 OH OH O 14 15 OH OH 13 5 O 15 NaBH4 aq 10% H2SO4 90% OH acetone H+ Prostaglandin F2! OH 75% O OH O O D-glucose O O commercially available NaBH4 MeOH 10 °C 1.5 h D-Glycero-D-guloheptono-1,4-lactone Ac2O, pyr CH2Cl2 -7 °C 18 h OH HO O OH 1) K2CO3, MeOH 2) ClCO2Me, pyr 3) CuSO4, aq MeOH 4) PhH, ! O O O OAc O O O OH 1) Me2NCH(OMe)2 2) Ac2O, ! O OAc O 40% overall O OH O Strategies for Stereocontrolled Synthesis Case Studies OH CO2H 9 (2) Prostaglandins from Sugars (Stork) 8 11 12 HO 13 6 5 14 15 Total Synthesis of PGF2! OH Prostaglandin F2! OH HO O O OH O acetone cat H2SO4 OH O O O O CO2Me CH3(OMe)3 cat EtCO2H ! O O O O 54% overall OTs O O O 80% CO2Me 1) K2CO3, MeOH 2) TsCl, pyr 3) EVE O 1) 10 eq Bu2CuLi Et2O, -40 °C 2 h 2) aq H2SO4 THF, rt 15 h O Am OR O LiHMDS RBr THF-HMPA OSit-BuPh2 O RO OR EVE O HO Am 35% overall 71% OR = OC(H)MeOEt OH Strategies for Stereocontrolled Synthesis Case Studies OH CO2H 9 (2) Prostaglandins from Sugars (Stork) 8 11 12 HO 13 6 5 14 Total Synthesis of PGF2! 15 OH Prostaglandin F2! O OSit-BuPh2 O DIBAL RO HCN EtOH -10 °C NC 50% aq AcOH THF, 35 °C OH OSiR3 HO Am HO Am OR OH OR = OC(H)MeOEt 1.5 eq TsCl pyr, -15 °C NC OR OSit-BuPh2 6 eq KHMDS benzene ! 5h OH OSiR3 TsO Am RO NC HO EVE Am 72% OR OH 37% overall Strategies for Stereocontrolled Synthesis Case Studies OH CO2H 9 (2) Prostaglandins from Sugars (Stork) 8 11 12 HO 13 Total Synthesis of PGF2! NC 6 14 5 15 OH Prostaglandin F2! OR OSit-BuPh2 Am RO OR = OC(H)MeOEt OR 31 steps in the longest linear sequence 1) TBAF, THF 2) Collins Ox 3) AgNO3, KOH aq EtOH NC OR CO2H AcOH H2O-THF 40 °C 5 h OH Lis-Bu3BH THF, -78 °C 1.5 h Am RO CO2H 73% HO OR OH Prostaglandin F2! Strategies for Stereocontrolled Synthesis [1,3] O$C Chirality Transfer CO2R OH 3 R1 R2 *1 2 * R1 3 1 R2 2 X Y X Y [1,3] O$N Chirality Transfer OH 3 R1 *1 NR2 R2 2 X Y * R1 3 1 R2 2 X Y Review of chirality transfer via sigmatropic rearrangements Hill, R. K. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: Orlando, 1984; Vol. 3, pp 503-572 Strategies for Stereocontrolled Synthesis [1,3] O$N Chirality Transfer OH 3 R1 NR2 R2 *1 * R1 3 2 1 R2 2 X Y X Y Overman Rearrangement of Allylic Trihaloacetimidates KH, CCl3CN Et2O BnO 140 °C xylene BnO HN HN O OH 45% overall CCl3 Bu OSiR3 OH BnO 1) DBU, CCl3CN CH2Cl2 2) 1% PdCl2(PhCN)2 benzene, rt Review: Overman, L. E.; Carpenter, N. E. Org. React. 2005, 66, 1 Bu 72% CCl3 O OSiR3 NHCOCCl3
© Copyright 2026 Paperzz