Asymmetric Organocatalysis with N-Heterocyclic Carbenes History and Recent Developments N CH3 N H 3C N NH 2 S Cl HO Adam Noble MacMillan Group Meeting January 29th 2014 Early Developments The Benzoin Condensation ! 1832: First report of bezoin condensation by Wöhler and Liebig Ph O CN – O H OH benzoin ! 1903: Mechanism proposed by Lapworth O CN – Ph Ph Ph Ph O + Ph OH H 2O H N HO H HO O OH Ph Ph H Ph N OH O Ph OH H Ph • H 2O N Wöhler, F.; Liebig, J. Ann. Pharm. 1832, 3, 249. Lapworth, A.; J. Chem. Soc. 1903, 83, 995. Thiamine (Vitamin B1 ) Enzymatic Acyl Anion Generation ! Thiamine is responsible for the genaration of acyl anion equivalents in a number of biochemical reactions NH 2 O R Cl N O O Me CO2 R N O + thiamine N Me OH S ! Most commonly found as the co-enzyme thiamine diphosphate (TDP) NH 2 N Me Me O N N O S ! ! ! ! P O thiamine diphosphate (TDP) O O P O OH Pyruvate decarboxylase Pyruvate oxidase Pyruvate dehydrogenase Transketolase Kluger, R.; Tittmann, K. Chem. Rev. 2008, 108 , 1797. Early Developments Thiamine-Catalyzed Benzoin Condensation ! 1943: Ugai discovered that thiazolium salts could replace cyanide in benzoin condensations Me NH 2 Cl HO N N S N O Ph H Me HO Ph N Ar O Me R NaOH, MeOH S Ph Ph OH Cl expected formed A variety of other thiazolium compounds were also demonstrated to be effective catalysts Me/H Me Me/H Ph N N Br S Me Me N Br S OH N Me N Br S Me Me S Ph Br I N Me Ugai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296. Early Developments Thiamine-Catalyzed Benzoin Condensation ! 1954: Mizuhara demonstrated that thiamine could catalyze a number of reactions that had also been observed in biological systems Me HO O O Me H N N O S R Me NH 2 Cl N Me Me Me O acyloin OH R = Me or OH + AcOH (R = Me) or CO2 (R = OH) ! Showed that the thiazolium moiety of thiamine was responsible for the catalytically activity NH 2 no reaction with: N Me OH Me N N CHO S 2 Mizuhara, S.; Handler, P. J. Am. Chem. Soc. 1954, 76, 571. Early Developments Mechanism of the Thiamine-Catalyzed Benzoin Condensation? ! Reactions such as pyruvate decarboxylation and benzoin-type condensations catalyzed by thiamine (vitamin B1 ) dependent enzymes were considered some of the most "mysterious" transformations ? ? NH 2 Me HO N N S N Me the origin of reactivity was unknown until the work of Breslow ? ! 1958: Breslow demonstrated that the C-2 proton of thiazoliums exchanges rapidly with deuterium Me Me N Br HO N S N S NH 2 Cl D 2O N H N Me Me Me H S Me D 2O Br D Me ND 2 Cl DO N S N D N Me Breslow, R. J. Am. Chem. Soc.. 1958, 80, 3719. Early Developments Breslows Proposed Mechanism ! 1958: Breslow proposed his mechanism for the thiazolium catalyzed benzoin condensation R2 R1 N R3 R2 – H+ R3 N R3 OH Ph S R2 OH O R3 Ph R1 OS Ph R2 R1 N O Ph H N Ph S S O R1 N R3 R3 R1 Ph R2 R1 N S R2 O Ph R2 N H S R1 H R3 OH S Ph Breslow intermediate Breslow, R. J. Am. Chem. Soc.. 1958, 80, 3719. From 'Laboratory Curiosities' to Catalysis Mainstays Synthesis of Stable N-Heterocyclic Carbenes ! Since the mechanistic work by Breslow, NHCs were only considered as highly reactive intermediates. ! Their high reactivty made the isolation of such species seemingly impossible, with dimerization being a major reaction pathway. Ph Ph Ph N Ph ∆ N N – CHCl3 N N CCl3 N Ph X Ph Ph N N Ph ! This was the case until 1968, when seminal work by the groups of Wanzlick and Öfele demonstrated that NHCs could be isolated in their metal-ligated forms Hans-Werner Wanzlick Karl Öfele Wanzlick, H.-W. Angew. Chem. Int. Ed. 1962, 1 , 75. Rovis, T, Nolan, S. P. Synlett 2013, 1188. Wanzlick and Öfele 1968: First isolation of ligated NHCs ! Wanzlick et al isolated a mercury complexed NHC OEt EtO Ph Ph Ph H N N N conc. HCl S Ph N S Ph 66% Ph N+ 2) NaClO 4 N H [ClO 4]– Ph 94% Ph N N 2 Hg N Ph 1) HNO 3 [ClO 4]– N Hg(OAc) 2, ! – 2 AcOH Ph quant. ! Isolated as colourless plates ! Structure confirmed by 1H NMR Wanzlick, H.-W.; Schönherr, H.-J. Angew. Che. Int. Ed. 1968, 7, 141. Wanzlick and Öfele 1968: First isolation of ligated NHCs ! Öfele isolated a chromium NHC complex while trying to generate dehydro-complexes from heterocyclic salts [HCr(CO) 5]– N ! – 2 CO Me Me N+ H Me N Me Me N Cr(CO)3 [HCr(CO) 5]– 120 ºC – H2 80% N Cr(CO)5 N Me ! Light yellow crystalline solid ! Structure confirmed by 1H NMR ! Despite these advances, the field remained relatively inactive for 23 years until a breakthrough discovery by the group of Arduengo Öfele, K. J. Organomet. Chem. 1968, 12 , 42. Arduengo 1991: First isolation of a stable crystalline NHC ! Isolated the free carbene by deprotonation of a bis-adamantyl imidazolium chloride NaH, THF N N H N+ Cl cat. DMSO anion N 96% ! The structure was unequivocally established by single-crystal X-ray analysis ! Thermally stable in the absense of oxygen and moisture ! The synthesis of isolable NHCs was instrumental in causing the explosion in interest in stable carbene chemistry Arduengo, III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113 , 361. Isolable NHCs Explosion in the Number of Reported Isolations ! After the first report from Arduengo in 1991, many other groups reported successful syntheses of a variety of new NHCs Alkyl Me Alkyl Ph N N i-Pr N N Me Me N Ph Alkyl N N Alkyl Ph Arduengo et al 1992 Mes Enders et al 1995 (first commercially available carbene) N N N Arduengo et al 1992 Herrmann et al 1996 i-Pr S Arduengo et al 1997 Mes N Mes Me N N Me N Me Mes Arduengo et al 1995 Herrmann et al 1996 Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100 , 39. Isolable NHCs Stability ! Original reports suggested that isolation was due to sterics preventing dimerization N N N N X N N N N ! The isolation of the carbene from 1,3,4,5-tetramethylimidazolium chloride suggested that electronic factors may have greater impact on the stability of carbenes than sterics. Me Me Me N+ NaH Me KOtBu, THF Me N H Me N Me N Me Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100 , 39. Isolable NHCs Stability ! Electronic factors operating in both the ! and " frameworks result in a "push-pull" synergistic effect to stabilize the carbene. !-electron donation N R R R1 N R1 "-electron withdrawal ! ! donation into the carbene from the out-of-plane ! orbital stabilizes electrophilic reactivity ! " withdrawal by electronegative atoms stabilizes nucleophilic reactivity ! The combined effect is to increase the singlet-triplet gap and stabilize the singlet-state carbene over the more reactive triplet-state carbene Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Act. 2009, 42, 55. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100 , 39. Isolable NHCs Reactivity: Why are they so useful? ! NHCs are exceptionally good ! donors so form strong metal–carbon bonds: ! Compared to phosphines, NHCs form complexes that: ! are more straightforward to prepare (due to in situ NHC formation) ! show greater air and thermal stability ! often have catalytic activities 100 to 1000 times greater Ph Me Ph Ph Me N Me Ph N Me Cl Me Me Ru Cl PCy 3 Ph N Me Ph Ph N Pd Cl Me Ph Ph Ph ! Singlet carbenes of NHCs are distinct Lewis bases that show both ! basicity and " acidity: ! Allows for the generation of a second nucleophile during a reaction (e.g. Breslow intermediate) ! This unique "doubly" nucleophilic aspect allows NHCs to react as powerful organocatalysts Rovis, T, Nolan, S. P. Synlett 2013, 1188. Arnold, P. L.; Pearson, S. Coord. Chem. Rev. 2007, 251, 596. Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Act. 2009, 42, 55. Isolable NHCs Reactivity: Why are they so useful? ! These factors have resulted in a huge increase in interest in NHCs over the past 70 years Number of Publications on NHC Catalysis! 700 600 400 300 200 100 Year! 2013 2008 2003 1998 1993 1988 1983 1978 1973 1968 1963 1958 1953 1948 0 1943 Number of! Publications! 500 N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Acyl Anions R O N N OH R R R O N R H R N R Homoenolates R O N N OH R R R O N R H R N R Azolium Enolates / Acyl Azoliums O X O • H R O R R N N O O R R N R R R OR R O N N R R N R N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Acyl Anions R O N N OH R R R H N R ! Benzoin Condensations ! Stetter Reactions ! Hydroacylations O N R R The Use of NHCs for the Generation of Acyl Anion Equivalents Early Developments ! 1943: Ugai discovered the thiazolium-catalyzed benzoin condensation R3 R2 N X R1 O Ph H O S Ph Ph NaOH, MeOH OH Ugai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296. The Use of NHCs for the Generation of Acyl Anion Equivalents The First Asymmetric Examples ! 1966: Sheehan described the first asymmetric benzoin condensations catalyzed by chiral thiazolium salts Me Ph S * N O O Br Ph O (10 mol%) O Ph Ph H Et3N (10 mol%) MeOH OH Precipitate: 50%, 0.8% ee Filtrate: 9% yield, 22% ee ! 1974: Sheehan reported slight improvements to enantioselectivity but still low yield Me S Br O Ph N H Me O (10 mol%) Ph Ph Et3N (10 mol%) MeOH OH 6% yield, 52% ee Sheehan, J. C.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666. Sheehan, J. C.; Hara, T. J. Org. Chem 1974, 39, 1196. The Use of NHCs for the Generation of Acyl Anion Equivalents The First Asymmetric Examples ! Following the work of Sheehan, a number of other groups reported the use of similar NHCs to catalyze benzoin condensations Ph Me N Cl S N Me ClO4 N S Me Me I N Br I N Me S Me N Ph N S O Me 47-57%, 20-30% ee Zhao et al, 1988 20%, 35% ee Takagi et al, 1980 21%, 26% ee López-Calahora et al, 1993 Ph O Me 66%, 75% ee Enders et al, 1996 O TBSO N N Cl TfO S N N Bicyclic triazoliums are key! Ph 50%, 21% ee Leeper et al, 1997 45%, 80% ee Leeper et al, 1998 Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534. The Use of NHCs for the Generation of Acyl Anion Equivalents The First Asymmetric Examples ! The initial development of N-aryl-bicyclic triazoliums led the way to improved catalyst efficiency Tunable sterics catalytic activity asymmetric induction Tunable electronics X N n R1 N N catalytic activity R2 basicity Rovisr, T. Chem. Lett. 2008, 37, 534. The Use of NHCs for the Generation of Acyl Anion Equivalents Bicyclic Triazolium Salts Give High Enantioselectivities ! Modification of Leepers bicyclic triazoliums allowed Enders to develop a highly efficient NHC catalysts Me Me Me O N (10 mol%) BF 4 O N Ph O Ph N H KOt-Bu (10 mol%) THF favored Ph Ph disfavored OH 83% yield, 90% ee favored Dudding, T.; Houk, K. N. Proc. Nat. Acad. Sci. 2004, 101 , 5770. Enders, D.; Kallfass, U. Angew. Chem. Int. Ed. 2002, 41, 1743. The Use of NHCs for the Generation of Acyl Anion Equivalents Bicyclic Triazolium Salts Give High Enantioselectivities ! Connon et al demonstrated the NHCs bearing alcohol directing groups can give exceptional levels of enantioinduction O N Ph Ph OH BF 4 N F F F (4 mol%) O Ph N H F O F Ph Ph Rb 2CO3 (4 mol%) THF OH 90% yield, >99% ee Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem. 2009, 74, 9214. The Use of NHCs for the Generation of Acyl Anion Equivalents Early Developments ! 1943: Ugai discovered the thiazolium-catalyzed benzoin condensation R3 R2 N X R1 O Ph O S Ph Ph H NaOH, MeOH OH ! 1974: Stetter reported the 1,4-addition variant = The Stetter Reaction R Me N X HO O R1 R2 H O S R1 EWG Et 3N, MeOH EWG R2 EWG = COR, CO2R, CN Ugai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296. Stetter, H.; Kuhlmann, H. Angew. Chem. Int. Ed. Engl. 1974, 13 , 539. The Use of NHCs for the Generation of Acyl Anion Equivalents Intramolecular Stetter Reactions ! In 1996 Enders et al. reported the first asymmetric Stetter Reaction Ph N N ClO4 N Ph O O Me O (20 mol%) O CO2R 2 Me H R1 O CO2R 2 K 2CO3 (20 mol%) THF R1 O 22-73% yield, 41-74% ee Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. Helv. Chim. Act. 1996, 79, 1899. The Use of NHCs for the Generation of Acyl Anion Equivalents Intramolecular Stetter Reactions ! Following the original report by Enders, Rovis et al. developed the first highly enantioselective intramolecular Stetter reactions O N N N BF 4 O OMe O CO2Et (20 mol%) H O KHMDS (20 mol%) CO2Et O xylene 94% yield, 94% ee N N Bn N BF 4 O (20 mol%) H CO2Et KHMDS (20 mol%) O CO2Et xylene 81% yield, 95% ee Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124 , 10298. The Use of NHCs for the Generation of Acyl Anion Equivalents Intermolecular Stetter Reactions ! Development of asymmetric intermolecular Stetter reactions still remains a formidable challenge ! This is due to the diminished reactivity of Michael acceptors containing a !-substituent ! Enders et al. developed a high yielding protocol taking advantage of the higher reactivity of chalcones, although the enantioselectivities were only moderate N N N Ph TBDPSO BF 4 O Ar3 Ar1 O (10 mol%) O H Ar2 Cs2CO3 (10 mol%) Ar3 Ar1 Ar2 O THF 49-98% yield, 58-78% ee Enders, D.; Han, J.; Henseler, A. Chem. Commun. 2008, 3989. The Use of NHCs for the Generation of Acyl Anion Equivalents Intermolecular Stetter Reactions ! In the same year Rovis et al. reported a highly enantioselective intermolecular Stetter reaction of glyoxamides a number of Michael acceptors R CO2t-Bu O CO2t-Bu N N N Bn H N O O CO2t-Bu N O C6F 5 BF 4 O R O CO2t-Bu 51-97% yield, 80-91% ee (20 mol%) R1 O iPr 2NEt (100 mol%), MgSO 4 NMe 2 CCl4 R1 O O O R2 N O ! A limitation was the need for highly activated alkylidene dicarbonyls NMe 2 O O R2 44-95% yield, 81-98% ee 4:1-19:1 dr A general strategy for asymmetric intermolecular Stetter reactions has not yet been developed! Liu, Q.; Rovis, T. Org. Lett. 2009, 11 , 2856. Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130 , 14066. The Use of NHCs for the Generation of Acyl Anion Equivalents Hydroacylation of Unactivated Double Bonds ! In 2008, She et al. reported the intramolecular hydroacylation of enol ethers HO Me O N S H O I Me (25 mol%) DBU (70 mol%) R Ph O O Ph R xylene, reflux 66-99% ! In 2011, Glorius et al. reported a highly asymmetric variant O N N Bn O Me N Cl Me Me O (10 mol%) H Me Ar DBU (10 mol%) O Ar dioxane, 80 ºC O 28-99% yield, 96-99% ee Piel, I.; Steinmetz, M.; Hirano, K.; Fröhlich, R.; Grimme, S.; Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983. He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She, X. Tetrahedron 2008, 64, 8797. The Use of NHCs for the Generation of Acyl Anion Equivalents Hydroacylation of Unactivated Double Bonds ! The mechanism was investigated by Glorius and Grimme and found to likely proceed via a concerted but highly asynchronous transition state. N O R H N N O O Mes !+ H O ‡ N R N N DBU N Mes R N N H R N N Mes Cl O O or N Me N Mes N O R Me O O R 2N (Conia)-Ene Mes reverse-Cope elimination vs. H 1 st 2nd O ‡ H !- O N !+ ‡ O ‡ H 1 st R 2N NR 2 2nd R concerted but asynchronous O Hirano, K.; Biju, A. T.; Piel, K.; Grimme, S.; Glorius, F. J. Am. Chem. Soc. 2009, 131 , 14190. Piel, I.; Steinmetz, M.; Hirano, K.; Fröhlich, R.; Grimme, S.; Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983. N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Acyl Anions R O N N OH R R R O N R H R N R Homoenolates R O N N OH R R R O N R H R N R Azolium Enolates / Acyl Azoliums O X O • H R O R R N N O O R R N R R R OR R O N N R R N R N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Homoenolates R O N N OH R R R O N R H N R ! Cyclopentene Synthesis ! Spiroannulations ! Lactam/Lactone Synthesis ! Conversion of Enals to Saturated Esters R The Use of NHCs for the Generation of Homoenolates The First Examples ! In 2004, the groups of Bode and Glorius reported the use of NHC-catalyzed homoenolate formation for the synthesis of !-butyrolactones O O Mes N N Cl Mes O (8 mol%) Bode: O Ar1 H Ar2 H DBU (7 mol%) THF/t-BuOH Ar1 Ar2 41-87%, 3:1-7:1 cis:trans O O Mes N N Cl Mes O (5 mol%) Glorius: O Ar1 H Ar2 H KOt-Bu (10 mol%) THF Ar1 Ar2 33-70%, up to 4:1 cis:trans Burstein, C.; Glorius, F. Angew. Chem. Int. Ed. 2004, 116 , 6331. Sohn, S. S.; Rosen, E. L.; Bode, J. J. Am. Chem. Soc. 2004, 126 , 14370. The Use of NHCs for the Generation of Homoenolates The First Examples ! Proposed mechanism for the NHC-catalyzed formation !-butyrolactones O N Ph O Ph Mes OH Mes Mes N Ph N Mes N H OH Mes N N Mes N Ph Mes Mes N homoenolate O O Ph Ar O Ar O Mes N Ph Mes N O O OH Mes H Ar N Ph Mes N activated carboxylate Burstein, C.; Glorius, F. Angew. Chem. Int. Ed. 2004, 116 , 6331. Sohn, S. S.; Rosen, E. L.; Bode, J. J. Am. Chem. Soc. 2004, 126 , 14370. The Use of NHCs for the Generation of Homoenolates Many Asymmetric Examples Followed ! Bode et al. demonstrated a variety of highly enantioselective transformations of homoenolates O N O R1 N N Cl Mes H (10 mol%) O N SO2Ar N SO2Ar O O OH R3 H Me R2 R2 O R1 O R1 O SO2Ar R3 O N SO2Ar H O Ph H Me R2 >50:1 dr 97-99% ee >10:1 dr 87-99% ee Ph OH Me R1 R2 >20:1 dr 99% ee R2 N R1 R2 Me R2 R2 O Ph Ph R2 2:1 dr 99% ee R1 R2 4->20:1 dr 96-99% ee He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130 , 418. Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009, 11 , 677. He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128 , 8418. Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc. 2007, 129 , 3520. Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc. Nat. Acad. Sci. 2010, 107 , 20661. The Use of NHCs for the Generation of Homoenolates Many Asymmetric Examples Followed ! Bode et al. demonstrated a variety of highly enantioselective transformations of homoenolates O SO2Ar N H Ph R1 R2 O O H OH Me Me R1 R2 Ph R1 R2 He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130 , 418. Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009, 11 , 677. Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc. 2007, 129 , 3520. The Use of NHCs for the Generation of Homoenolates Many Asymmetric Examples Followed ! Recently, Chi et al. demonstrated a homoenolate coupling with benzodi(enone)s for the synthesis of complex tricyclic structures O N N N Cl Mes O O R1 R1 R2 R3 H O R3 (20 mol%) DBU (30 mol%) THF O H O O H R3 53-84% yield 96-99% ee 10-20:1 dr Fang, X.; Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem. Int. Ed. 2011, 50, 1910. The Use of NHCs for the Generation of Homoenolates Many Asymmetric Examples Followed ! Recently, Chi et al. demonstrated a homoenolate coupling with benzodi(enone)s for the synthesis of complex tricyclic structures R1 R O H O O H product 5 R2 Fang, X.; Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem. Int. Ed. 2011, 50, 1910. N-Heterocyclic Carbenes As Enantioselective Organocatalysts Alternative Applications of Homoenolates Homoenolates R O N N OH R R R O N R H R N R R1 OH R N R2 R1 O N R2 N R R ROH N R "Redox Relay" RO – (-NHC) R1 R2 O OR The Use of NHCs for the Generation of Homoenolates Alternative Applications of Homoenolates ! Using this ester formation reaction they could perform desymmetrizations of meso diols and enantioselective protonations of !,!-disubstituted enals O N N N BF 4 Mes OH OH O Ph H (30 mol%) O proton sponge K 2CO3, 18-crown-6 CH2Cl2 OH O O 58%, 80% ee N Ph N Ph Ph N BF 4 Mes Bn Me O Me Ph Me (30 mol%) H OH proton sponge K 2CO3, 18-crown-6 CH2Cl2 Ph O O Me 58%, 55% ee Maki, B.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371. Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. The Use of NHCs for the Generation of Homoenolates Alternative Applications of Homoenolates ! The group of Chi has reported the reversed process for the generation of homoenolates from saturated esters, allowing for direct !-substitution. N Me O N N O Me Me N Ph Ph OAr (– ArO–) OH Me N Me N N O Me N Ph N N Me OH Me Ph H base N N Me N Ph Me N N homoenolate Fu, Z.; Xu, X.; Zhu, X.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835. The Use of NHCs for the Generation of Homoenolates Alternative Applications of Homoenolates ! The group of Chi has reported the reversed process for the generation of homoenolates from saturated esters, allowing for direct !-substitution. O R2 R1 R2 up to 81% yield 94% ee, 20:1 dr R1 R N Me Me NO 2 O R O Me N N BF 4 Ph O Ar CF3 (20 mol%) O up to 61% yield 88% ee, 2:1 dr O DBU (150 mol%) 4 Å MS, MeCN Ar F 3C BzHN H R N CO2Et O BzHN N up to 76% yield 94% ee, 7:1 dr EtO 2C R Fu, Z.; Xu, X.; Zhu, X.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835. N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Acyl Anions R O N N OH R R R O N R H R N R Homoenolates R O N N OH R R R O N R H R N R Azolium Enolates / Acyl Azoliums O X O • H R O R R N N O O R R N R R R OR R O N N R R N R N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Azolium Enolates / Acyl Azoliums O R O • H X O R R N N O O R R N R R R OR R O N N R R ! [2+2] Cycloadditions ! [4+2] Cycloadditions ! [3+2] cycloadditions ! Enolate Chemistry N R The Use of NHCs for the Generation of Azolium Enolates The First Examples ! The groups of Ye and Smith independently developed formal [2+2] cycloadditions promoted by the addition of NHCs to ketenes N N N Ph Ph O N • Ar1 R Ar2 Boc H BF 4 Ph OTBS O Boc (10 mol%) N Cs2CO3 (10 mol%) THF Ar1 Ar2 R 53-78% yield, 91-99% ee 2.5-99:1 dr O N N O N • Ph Ph Ar1 Ts H N BF 4 Ph O (10 mol%) KHMDS (9 mol%) Et 2O Ts N Ph Ph Ar1 79-96% yield, up to 75% ee (>99% ee after recryst.) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S.; Org. Lett. 2008, 10 , 277. Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. C. Org. Biomol. Chem. 2008, 6, 1108. The Use of NHCs for the Generation of Azolium Enolates The First Examples ! The groups of Ye and Smith independently developed formal [2+2] cycloadditions promoted by the addition of NHCs to ketenes O Boc N TBSO Ar1 Ar2 R O N N Ph N • Ph Ar1 Ph R N N N TBSO Ph acyl azolium Ph N Ph R Ar1 O N Ph Ph Ar2 N N TBSO Ph R O azolium enolate Ar1 H Boc N Ar2 Boc H Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S.; Org. Lett. 2008, 10 , 277. Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. C. Org. Biomol. Chem. 2008, 6, 1108. The Use of NHCs for the Generation of Azolium Enolates Expanding the Scope of [2+2] Cycloadditions ! Since 2008, Ye et al. have reported numerous other enantioselective [2+2] cycloadditions O O O O R R1 Ar O Ar2 Ar1 O N O CO2Et Ar2 O N N N Ar CO2Et R Ar2 O O R Ar1 N S R Ar1 O R2 2008 2010 2010 2011 2011 Chen, X.-Y.; Ye, S. Synlett 2013, 1614. Douglas, J.; Churchill, G.; Smith, A. C. Synthesis 2012, 44, 2295. The Use of NHCs for the Generation of Azolium Enolates [3+2] Cycloadditions ! The same group also reported an analogous [3+2] cycloaddition using oxaziridines N N BF 4 Ar1 N Ar2 Cl O NTs • Ar1 O Ar2 OTBS O NTs (10 mol%) R Cs2CO3 (10 mol%) toluene R Cl Ar O (+/–) up to 78% yield, up to 95% ee 8-15:1 dr N N N R N Ar R1 Ar1 O TsN O N N R O R1 O NTs Ar Ar2 Ar1 Ar2 Chen, X.-Y.; Ye, S. Synlett 2013, 1614. Douglas, J.; Churchill, G.; Smith, A. C. Synthesis 2012, 44, 2295. The Use of NHCs for the Generation of Azolium Enolates [4+2] Cycloadditions ! Ye et al. also demonstrated a number [4+2] cycloaddition reactions N N N Ph O EtO 2C • Ph R OTMS O (10 mol%) N N Ar1 BF 4 Ph Cs2CO3 (10 mol%) THF CO2Et CO2Et N N Ar CO2Et R 52-95% yield, 33-91% ee N N N Ph O Bz • Ar1 R Ph BF 4 Ph O OTMS N (10 mol%) N Cs2CO3 (10 mol%) THF Ar Bz R O N Ph N Bz 52-95% yield, 33-91% ee Chen, X.-Y.; Ye, S. Synlett 2013, 1614. Douglas, J.; Churchill, G.; Smith, A. C. Synthesis 2012, 44, 2295. The Use of NHCs for the Generation of Azolium Enolates [4+2] Cycloadditions ! Ye et al. reported the use of a variety of other 'dienes' in [4+2] cycloaddition reactions O Ar R O N Ph O O Ts Ar2 O Ar1 N R1 CO2Et 50-92% yield >90% ee >80% yield 57-93% ee >15:1 dr EtO 2C N R2 >80% yield 83-93% ee >10:1 dr R O Ar2 Ar1 R Bz N Ar1 O O O O O Ar1 R PMP Bz 88-99% yield 69-90% ee 3-10:1 dr 30-96% yield 51-99% ee 2-9:1 dr Chen, X.-Y.; Ye, S. Synlett 2013, 1614. Douglas, J.; Churchill, G.; Smith, A. C. Synthesis 2012, 44, 2295. N-Heterocyclic Carbenes As Enantioselective Organocatalysts Modes of Reactivity Azolium Enolates / Acyl Azoliums O R O • H X O R R N N O O R R N R R R OR R O N N R R ! [2+2] Cycloadditions ! [4+2] Cycloadditions ! [3+2] cycloadditions ! Enolate Chemistry N R N-Heterocyclic Carbenes As Enantioselective Organocatalysts Modes of Reactivity Azolium Enolates / Acyl Azoliums O R O O • H R X R N O N O R R R R N N R OR N R R N R R ! Enolate chemistry of !-functionalized aldehydes O R R N N R OH R R N – HX O R R N H X N X R N R The Use of NHCs for the Generation of Azolium Enolates Utilizing ! Functionalized Aldehydes ! In 2005, Rovis et al. devloped a synthesis of !-chloro esters utilizing an enantioselective protonation of an in situ generated !-chloro enolate OH O N Cl BF 4 C6F 5 (10 mol%) H Cl N Br Me O R Br N Ar (120 mol%) OH KH (100 mol%), 18-crown-6 toluene O R OAr Cl 65-79% yield, 84-93% ee Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 128 , 2860. The Use of NHCs for the Generation of Azolium Enolates Utilizing ! Functionalized Aldehydes ! In 2009, Scheidt et al. demonstrated that !-aryloxyacetaldehyde to be competent enolate equivalents in Mannich reactions, giving "-amino amide derivatives O N Me N Me O2N BF 4 C6F 5 Bn O O N N H Ar Ts (10 mol%) 4-NO2-C6H 4ONa (200 mol%) THF-CH2Cl2 then BnNH 2 Ts Ar NH O NHBn 56-75% yield, >90% ee Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131 , 18028. N-Heterocyclic Carbenes In Enantioselective Organocatalysis Modes of Reactivity Acyl Anions R O N N OH R R R O N R H R N R Homoenolates R O N N OH R R R O N R H R N R Azolium Enolates / Acyl Azoliums O X O • H R O R R N N O O R R N R R R OR R O N N R R N R Oxidative NHC Catalysis Oxidative Functionalization of Aldehydes ! In 2007 and 2008, Scheidt et al. demonstrated NHCs could catalyze the MnO 2-promoted oxidation of benzylic and vinylic alcohols to esters, and unactivated aldehydes to esters R1 OH N activated alcohol Me O R1 N N I Me (10 mol%) O R 2OH, MnO 2, DBU R1 H 64-99% yield unactivated aldehyde OH O Me N R1 N Me OR2 N Me [O] N R1 N Me N Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371. Maki, B. E.; Scheidt, K. A. Org. Lett. 2008, 10 , 4331. Oxidative NHC Catalysis Oxidative Functionalization of Aldehydes ! Since these reports, Chi et al. have demonstrated the use of oxidative NHC catalysis in a variety of highly enantioselective reactions O N N O Ar O R1 H N BF 4 Mes O (10 mol%) O R2 O oxidant Cs2CO3 (50 mol%), THF R2 Ar R1 O 53-98% yield, 70-94% ee O t-Bu t-Bu OH N oxidant: Ar t-Bu N Me O Me N [O] N Ar N Me O Me N Me [O] N Ar N Me N t-Bu O Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 8588. Oxidative NHC Catalysis Oxidative Functionalization of Aldehydes ! Since these reports, Chi et al. have demonstrated the use of oxidative NHC catalysis in a variety of highly enantioselective reactions O N N O R1 X BF 4 Mes O (10 mol%) O H N O R2 oxidant Cs2CO3 (50 mol%), THF Me R2 R1 X 61-89% yield, 84-99% ee O t-Bu t-Bu O O N t-Bu t-Bu Boc O O CF3 oxidant: O O CF3 Ph S Et NH O O O Chen, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 11134. Oxidative NHC Catalysis Oxidative Functionalization of Aldehydes ! Since these reports, Chi et al. have demonstrated the use of oxidative NHC catalysis in a variety of highly enantioselective reactions O N N O R1 O O R2 oxidant Cs2CO3 (50 mol%), THF Me X BF 4 Mes (10 mol%) O H N R2 R1 X 61-89% yield, 84-99% ee OH O R N X RN Me N R N [O] X base RN CH2 O R base N N X RN N H increased acidity of benzylic position Chen, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 11134. Oxidative NHC Catalysis An Enantioselective Oxidative Aza-Acyloin Reaction ! In 2012, Rovis et al. reported the merger of photoredox and NHC catalysis for the enantioselective !-acyaltion of tertiary amines O N N Br N Br (5 mol%) O N Ph Ph Br N Ph Ru(bpy) 3Cl2 (1 mol%) H m-dinitrobenzene (120 mol%) CH2Cl2, blue LEDS via: N O Ph 91% yield, 92% ee X– Ph DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134 , 8094.
© Copyright 2026 Paperzz