WAVE MOTION Mechanical waves: for example sound wave, water wave, string wave -‐ Caused by an ini=al disturbance at some loca=on. -‐ Energy travels through media without the displacement of the ma@er. Types of waves Types of waves can be categorized by different means. (1) Direc=on of par=cle mo=on Longitudinal waves (eg. Sound wave):-‐ Wave propaga=on direc=on same as the par=cle mo=on direc=on. Transverse waves (eg, string):-‐ Wave propaga=on direc=on is perpendicular to the par=cle mo=on direc=on. (2) Dimension (3) Periodicity Periodical wave:-‐ All par=cles in media are in periodic mo=on Single wave train (or wave pulse) (4) Shape (eg. Sine wave, triangular wave, square wave) Travelling waves Consider a wave travels in +ve direc=on such that at =me zero: y(x, 0) = f (x) At a later =me t, y(x,t) = f (x − vt) Consider the mo=on of a par=cular point P (i.e. phase) of the wave at =me zero. At =me t, this par=cular phase P’ is at a distance vt away from P. v is called the phase velocity. For wave travelling to the leT side (i.e. –ve x direc=on) y(x,t) = f (x + vt) Sinusoidal waves In par=cular if the wave form is sinusoidal func=on, y(x, 0) = f (x) = y sin 2π x and thus m λ 2π y(x, t) = y sin ( x − vt ) m λ -‐ v is the phase velocity of the wave. -‐ For a fixed =me t, y(x,t) repeat itself for every distance of λ, the wavelength. Define period T as the =me required at any par=cular point such that a complete cycle of wave mo=on is observed, i.e. λ = vT 2π More defini=ons: k = = wave number λ ω =2π f = 2π = angular frequency T Travelling to the left: y(x, t) = ym sin ( kx − ω t ) or =ym sin (ω t − kx ) Travelling to the right: y(x, t) = ym sin ( kx + ω t ) or = ym sin "#− ( kx + ω t )$% Transverse velocity of media par=cle Consider at some posi=on x, we monitor the ver=cal mo=on a the media par=cle, y(x, t) = ym sin ( kx − ω t ) ∂y vy (x, t) = = −ymω cos ( kx − ω t ) ∂t ∂2 y 2 2 ay (x, t) = = y ω sin kx − ω t = ω y ( ) m 2 ∂t The par=cle is in ver=cal SHM with angular frequency of ω. Phase y(x, t) = y sin kx − ω t − φ ( ) m kx − ω t − φ = phase of the wave φ = phase constant Two waves with the same phase (or differed by 2nπ) is called in phase. ( " φ% + y(x, t) = ym sin *k $ x − ' − ω t k& ) # , ( " φ %+ y(x, t) = ym sin *kx − ω $ t + '# ω &, ) (1) (2) Two interpreta=ons of the phase constant ϕ (1) Consider at a fixed =me t (i.e. taking photo of the two waves) ( " φ% + y(x, t) = y sin k x − − ω t m * $ ' - is a wave going ϕ/k ahead of y(x, t) = y m sin [ kx − ω t ] . k& ) # , (2) Consider at a fixed posi=on x (i.e. we observe the =me varia=on of y at this posi=on) ( " φ %+ y(x, t) = y sin kx − ω y(x, t) = y m sin [ kx − ω t ] leads m * $ t + ' - by a =me of ϕ/ω. # ω &, ) The Wave Equa=on ∂2 y 1 ∂2 y = 2 2 2 ∂x v ∂t No=ce that y(x,t)=f(x±vt) is a solu=on to the wave equa=on. Let z = x ± vt = z(x, t) and y = f (z) Pf: ∂y df ∂z df = = ∂x dz ∂x dz ∂2 y d " df % ∂z d 2 f = $ ' = ∂x 2 dz # dz & ∂x dz 2 ∂y df ∂z df = = ±v ∂t dz ∂t dz 2 ∂2 y d " df % ∂z 2 d f = $ ±v ' = v ∂t 2 dz # dz & ∂t dz 2 ∂2 y 1 ∂2 y Thus implying 2 = 2 2 ∂x v ∂t y(x, t) = y m sin [ kx − ω t ] is one of the func=on sa=sfying the wave equa=on. Transverse wave on a stretched string Considering the y-‐component of the force ac=ng on the segment δx: ∑F y = F sin θ1 − F sin θ 2 ≈ F ( tan θ1 − tan θ 2 ) % ∂y ( ∵tan θ i = ' * & ∂x )x1 % ∂y ( ∴ ∑ Fy = Fδ ' * & ∂x ) By Newton's 2nd law: ∂2 y ∑ Fy = δ may = µδ x ∂t 2 Combining with (1): (1) (µ =linear density of string) % ∂y ( ∂2 y Fδ ' * = µδ x 2 & ∂x ) ∂t % ∂y ( δ' * 2 & ∂x ) µ ∂ y = δx F ∂t 2 ∂2 y µ ∂2 y = ∂x 2 F ∂t 2 The wave equation with : v = F µ Energy of transverse wave on string Consider a transverse sine wave transmiang through a string. For the par=cular segment dx at posi=on x, it is undergoing SHM in y-‐direc=on: y(x, t) = y sin [ kx − ω t ] m Mass of the segment: dm = µ dx KE of the segment: 2 1 1 2 " $ dK = dmvy = µ dx #−ω ym cos ( kx − ω t )% 2 2 dK 1 dx ∴ = µω 2 ym2 cos2 ( kx − ω t ) dt 2 dt 1 = µω 2 ym2 v p cos2 ( kx − ω t ) 2 vP = phase velocity (1) PE of the segment is the work done by the force F of stretching the string from its equilibrium length to its present status " dx 2 + dy 2 − dx $ dU = F dl − dx = F ( ) # % 2 " $ ' * ∂y = Fdx - 1+ ) , −1. ( ∂x + -# .% n Binomial expansion: (1+ z ) ≈ 1+ nz 2 * 1 # ∂y &2 - 1 # ∂y & dU ≈ Fdx ,1+ % ( −1/ = Fdx % ( $ ∂x ' ,+ 2 $ ∂x ' /. 2 2 dU 1 dx * 1 ∴ = F + ym k cos ( kx − ω t )-. = FvP ym k 2 cos2 ( kx − ω t ) dt 2 dt 2 1 = µω 2 ym2 vP cos2 ( kx − ω t ) 2 dK = dt E =U + K dE dU dK ⇒ = + = µω 2 ym2 vP cos2 ( kx − ω t ) dt dt dt In general, dE/dt ≠ 0, energy not constant with respect to =me. No=ce it is not an isolated system. There is work done by the neghboring string segment. ! dE $ dE As P = and Pav = # & " dt %av dt * T cos2 kx − ω t dt . ( ) , 1 2 2 ⇒ P = µω 2 y 2 v ,+ ∫ 0 / = µω ym vP av m P T ,,0 2 Intensity of wave is defined as: Pav A A = area of wavefront for 3D-wave. I=
© Copyright 2026 Paperzz