10 April, 2017 564 million tons of hydrogen are converted into 560 million tons of helium per second of thisoftalk HeatPurpose balance Earth ASSun SSun E=mc2 SE (1-A)SSun 3.8 x 1026 W Rinke Wijngaarden 63 MW/m2 1 What heats the 2 564 million tons of hydrogen are converted into 560 million tons of helium per second (0.42 MeV) E=mc2 1 MeV=1.6 x 10-13 J 3.8 x 1026 W But how do we know this? 63 MW/m2 4 3 1. Measuring the Sun’s temperature 2. Calculating the total power 3.8 x 1026 W Planck’s Law 25000 2 Spectral Irradiance (W/m /eV)) 30000 20000 5800 K 15000 dE 2 2 h 2 h d c e k BT 1 T = 5800 K T = 5800 K = 5.67x10-8Wm-2K-4 10000 5000 0 0 2 4 6 Stefan–Boltzmann law 8 Photon energy [eV] 5 6 1 10 April, 2017 World Total Primary Energy Supply 2014 1368 W/m2 sun: 3.8 x 1026 W 1.5 x 1011 m R2 63 MW/m2 17.6 TW 7 x 108 m 7 http://www.iea.org/textbase/nppdf/free/2007/Key_Stats_2007.pdf IEA: KeyWorld2016.pdf 8 Solar area Sahara 50 TW Future world power consumption 1010 persons 5 kW/person = 50 TW 1200 x 1200 km2 W/m2 Solar constant: 1350 50% reaches the Earth’s surface 25% due to R2/4R2 Efficiency of photovoltaics: 20%. 148 m2/person 63 MW/m2 1.48 106 km2 0.8 km2 gives 50 TW 9 10 Summary heat transfer by radiation Heat transfer through radiation Stefan–Boltzmann law S = 5.67 x 10-8 T4 [W/m2] Spectral energy density dE/df R2 1200 x 1200 km2 63 MW/m2 0.8 km2 gives 50 TW dE 2 2 h 2 h d c e k BT 1 1.0 300 K 600 K 900 K 1200 K 0.5 0.0 0.0 11 Planck’s Law 1.5 0.5 1.0 1.5 2.0 Photon energy [eV] 2.5 3.0 12 2 10 April, 2017 Some constants Spectral irradiance on Earth Planck's constant: h 6.626 0693(11)×10-34 Js = 4.135 667 43(35)×10-15 eVs Wien's displacement constant b = 2.897 7685(51)×10–3 mK max Tb 1.380 6505(24)×10−23 J/K = 8.617 343(15)×10−5 eV/K Boltzmann constant: kB Stefan–Boltzmann constant: 5.670 400(40)×10−8 Wm-2K-4 Speed of light: c 299 792 458 m/s dE 2 2 h 2 h d c e k BT 1 14 15 Incoming and reflected solar energy 70% absorbed 100 % Albedo = 0.3 The Greenhouse effect Atmosphere: 6% Clouds: 20 % Earth’s surface: 4 % 16 Without atmosphere 5600 K 17 Absorption by the atmosphere 260 K 5600 K 18 260 K 19 3 10 April, 2017 Why water and CO2 ? Earth without an atmosphere O H _ equilibrium: ASSun H 1 − 0. 31366 W m−2 4 5. 67 10 −8 W m−2 K −4 T 4 C + R 2 S Sun 1 A 4 R 2 S Earth 4 1 A S Sun 4S Earth 4 TEarth _ O + SSun T Earth 255 K O SEarth _ (1-A)SSun _ + T Earth −18 o C _ + e.m. wave e.m. wave 20 Earth with totally absorbing atmosphere: Greenhouse effect SSun Sa ASSun 2 Sa S Earth 21 Earth with totally absorbing atmosphere: Greenhouse effect SSun Sa ASSun 2 Sa S Earth R 2 S Sun 1 A 4 R 2 Sa 4 R 2 S Earth SE Sa SE (1-A)SSun (1-A)SSun Sa S Sun 1 A 4S a 4S Earth 4 S Sun 1 A 2S Earth 2 TEarth T Earth 303 K R 2 S Sun 1 A 4 R 2 Sa 4 R 2 S Earth22 Radiative forcing without atmosphere T Earth 255 K T Earth 30 o23C Radiative forcing in reality T Earth 288 K (15 o C) conc ppmv warming effect (oC) H2O vapour 5000 20.6 CO2 360 7.2 O3 0.03 2.4 N2O 0.3 0.8 CH4 1.7 0.8 TOTAL warmer more H2O feedback ! sun spots 33.0 Mount Chimaera / Yanartaş 25 4 10 April, 2017 Direct Global Warming Potentials (mass basis) relative to carbon dioxide GWP *) axial tilt (nutation): 41 ky Pre-1750 Current concentra tropospheric -tion concentration (100-year time horizon) Atmospheric lifetime (years) Carbon dioxide (CO2) 280 ppm 377.3 ppm 1 variable Methane (CH4) 730 ppb 1847 ppb 23 12 114 GAS Nitrous oxide (N2O) 270 ppb 319 ppb 296 Tropospheric ozone (O3) 25 ppb 34 ppb n.a. hours-days CFC-11 (CCl3F) zero 253 ppt 4600 45 HFC-23 (CHF3) zero 14 ppt 12000 260 Perfluoroethane (C2F6) zero 3 ppt 11900 10000 *) Global Warming Potential excentricity: 95,125,400 ky longitude of perihelion precession: 19,22,24 ky 20% variation! insolation Will the temperature also change by 20%? T 0 Igas Mgas dt GWP T 0 ICO 2 MCO 2 dt I = radiative forcing M = amount of gas at time t 26 27 Effect of change in solar “constant” Radiative forcing We consider heat emitted/received by Earth The geometry is constant. We consider the flux per m2 for simplicity Stefan–Boltzmann law CO2 increase 280386 ppm gives S = 1.66 W/m2 Clouds increase greenhouse effect by S = 30 W/m2 P T 4 dP dT Clouds reduce solar absorption by S = 48 W/m2 4T 3 dP P 4T 3 dT T 4 dT T 1 dP 4 P 4dT T Total atmospheric greenhouse effect is S = 140 W/m2 dP 4T 3 dT dP P 20% dT T 5% ΔT 15 K Real past variability is < 15 K. The 20% in dP/P is for 65oN, average over earth is smaller. 1 dP 4 P total greenhouse dT 1 dP 4 P T 1 4 CO2 increase dT 1 dP 4 P T 1 4 dT T 28 Non-linear relation: warming vs conc. 140 1 1366 4 1.66 1 1366 4 289 29. 619 K 289 0. 351 2 K 29 Sunspots and solar input to Earth 100% ΔF CO2 lnC/C0 with 5. 3 30 solar irradiance (Wm-2) 0% More Sun spots: (1) More irradiance (2) More ozone More greenhouse 31 5 10 April, 2017 Sunspots and temperature Conclusions CO2 and Temperature CO2 CO2 (ppm) [75 years smoothed] 400 350 Law Dome Ice Core Mauna Loa 300 250 1000 1200 1400 1600 Date 1800 2000 http://cdiac.ornl.gov/ftp/trends/co2/lawdome.combined.dat CO2 is certainly rising fast It is 40% higher now that it was during the past 106 y politics The temperature is rising 32 Introduction of new energy vectors, CO2 regulations etc. YOU 33 What can we do? Find sources of energy that do not produce CO2 • geothermal heat • chemical (CO2) • gravitational (tides) flow • nuclear we don’t do this • solar solar heat heat photovoltaics semiconductor bioenergy we don’t do this hydropower flow wavepower flow heat flow/fluid dynamics semiconductor What will we do? How does it work? How much energy can we get from it? 34 6
© Copyright 2026 Paperzz