Haroldβs Taylor Series Cheat Sheet 20 April 2016 Power Series Power Series About Zero Geometric Series if ππ = π Power Series +β β ππ π₯ π = π0 + π1 π₯ + π2 π₯ 2 + π3 π₯ 3 + π4 π₯ 4 + β― π=0 +β β ππ (π₯ β π)π = π0 + π1 (π₯ β π) + π2 (π₯ β π)2 + β― π=0 Approximation Polynomial π(π) = π·π (π) + πΉπ (π) ππ (π₯) = ππ‘β ππππππ ππππ¦ππππππ ππππππ₯ππππ‘πππ π π (π₯) = ± πΈππππ ππππΈ: ππ (π₯) ππ πππ π¦ π‘π πππ‘πππππ‘π πππ πππππππππ‘πππ‘π Maclaurin Series Maclaurin Series Taylor Series centered about π₯ = 0 Maclaurin Series Remainder +β π(π) β π·π (π) = β π=π π(π) (π) π π π! π (π+1) (π₯ β ) π+1 π₯ (π + 1)! where π₯ β€ π₯ β β€ πππ₯ and lim π π (π₯) = 0 π π (π₯) = π₯β+β Taylor Series Taylor Series Maclaurin Series if π = 0 +β π(π₯) β ππ (π₯) = β π=0 π (π) (π) (π₯ β π)π π! (π+1) Taylor Series Remainder π (π₯ β ) (π₯ β π)π+1 (π + 1)! where π₯ β€ π₯ β β€ π and lim π π (π₯) = 0 π π (π₯) = π₯β+β Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 1 Series Examples Exponential Functions β π π =β ππ πππ πππ π π! π=π β π π₯ = π π₯ ln(π) = β π=0 1+π₯+ (π₯ ln(π))π πππ πππ π₯ π! π₯2 π₯3 π₯4 π₯5 π₯6 π₯7 π₯8 + + + + + + +β― 2! 3! 4! 5! 6! 7! 8! 1 + π₯ ln(π) + [π₯ ln(π)]2 [π₯ ln(π)]3 + +β― 2! 3! Natural Logarithms β ln (1 β π₯) = β β ln (π₯) = β (β1) π=1 β π₯π§ (π + π) = β π=π β π=1 πβ1 π₯π πππ |π₯| < 1 π π₯+ (π₯ β 1)π πππ |π₯| < 1 π π₯2 π₯3 π₯4 π₯5 π₯6 π₯7 π₯8 + + + + + + +β― 2 3 4 5 6 7 8 (π₯ β 1) β (βπ)πβπ π π πππ |π| < π π π₯β 1+π₯ 2 )=β ln ( π₯ 2πβ1 πππ |π₯| < 1 1βπ₯ 2π β 1 2π₯ β π=1 (π₯ β 1)2 (π₯ β 1)3 (π₯ β 1)4 + β +β― 2 3 4 π₯2 π₯3 π₯4 π₯5 π₯6 π₯7 π₯8 + β + β + β +β― 2 3 4 5 6 7 8 2π₯ 2 2π₯ 3 2π₯ 4 2π₯ 5 2π₯ 6 2π₯ 7 + β + β + ββ― 3 5 7 9 11 13 Geometric Series β 1 = β(β1)π (π₯ β 1)π πππ 0 < π₯ < 2 π₯ π=0 1 β (π₯ β 1) + (π₯ β 1)2 β (π₯ β 1)3 + (π₯ β 1)4 + β― β 1 = β(β1)π π₯ π πππ |π₯| < 1 1+π₯ π=0 1 β π₯ + π₯2 β π₯3 + π₯4 β π₯5 + π₯6 β π₯7 + π₯8 β β― β π = β ππ πππ |π| < π πβπ β 1 + π₯ + π₯2 + π₯3 + π₯4 + π₯5 + π₯6 + π₯7 + π₯8 + β― π=π 1 = β(β1)π π₯ 2π πππ |π₯| < 1 1 + π₯2 π=0 1 β π₯ 2 + π₯ 4 β π₯ 6 + π₯ 8 β π₯ 10 + π₯ 12 β π₯ 14 + β― β 1 = β π₯ 2π πππ |π₯| < 1 1 β π₯2 1 + π₯ 2 + π₯ 4 + π₯ 6 + π₯ 8 + π₯ 10 + π₯ 12 + π₯ 14 + β― π=0 β 1 = β(β1)πβ1 ππ₯ πβ1 πππ |π₯| < 1 (1 + π₯)2 π=1 1 β 2π₯ + 3π₯ 2 β 4π₯ 3 + 5π₯ 4 β 6π₯ 5 + 7π₯ 6 β β― β 1 = β ππ₯ πβ1 πππ |π₯| < 1 (1 β π₯)2 1 + 2π₯ + 3π₯ 2 + 4π₯ 3 + 5π₯ 4 + 6π₯ 5 + 7π₯ 6 + β― π=1 β (β1)πβ1 (π β 1)π πβ2 1 = β π₯ (1 + π₯)3 2 π=2 1 β 3π₯ + 6π₯ 2 β 10π₯ 3 + 15π₯ 4 β 21π₯ 5 + 28π₯ 6 β β― πππ |π₯| < 1 Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 2 β 1 (π β 1)π πβ2 =β π₯ πππ |π₯| < 1 3 (1 β π₯) 2 π=2 β (β1)π (2π)! π₯π 4π (π!)2 (1 β 2π) β1 + π₯ = β π=0 πππ β 1 < π₯ β€ 1 β (2π)! π₯π β1 β π₯ = β π 4 (π!)2 (1 β 2π) π=0 πππ β 1 < π₯ β€ 1 β (β1)π (2π)! 2 β1 + π₯ = β π π₯ 2π 4 (π!)2 (1 β 2π) π=0 πππ β 1 < π₯ β€ 1 β (2π)! 2 β1 β π₯ = β π π₯ 2π 4 (π!)2 (1 β 2π) π=0 πππ β 1 < π₯ β€ 1 1 + 3π₯ + 6π₯ 2 + 10π₯ 3 + 15π₯ 4 + 21π₯ 5 + 28π₯ 6 + β― 1 1 1 5 4 7 5 21 5 1 + π₯ β π₯2 + π₯3 β π₯ + π₯ β π₯ 2 8 16 128 256 1,024 +β― 1 1 1 5 4 7 5 21 5 1 β π₯ β π₯2 β π₯3 β π₯ β π₯ β π₯ 2 8 16 128 256 1,024 ββ― 1 1 1 5 8 7 10 1 + π₯2 β π₯4 + π₯6 β π₯ + π₯ ββ― 2 8 16 128 256 1 1 1 5 8 7 10 1 β π₯2 β π₯4 β π₯6 β π₯ β π₯ ββ― 2 8 16 128 256 (π)βΌ = π(π β 2)(π β 4) β¦ 6 β 4 β 2 ππ ππ£ππ (π)βΌ = π(π β 2)(π β 4) β¦ 5 β 3 β 1 ππ πππ π€βπππ 0βΌ = 1 πππ β1βΌ = 1 Double Factorial (!!) β 1 β1 + π₯ =β π=0 (β1)π (2π β 1)βΌ π π₯ (2π)βΌ πππ β 1 < π₯ β€ 1 β (2π β 1)βΌ π 1 =β π₯ (2π)βΌ β1 β π₯ π=0 πππ β 1 < π₯ β€ 1 β (β1)π (2π β 1)βΌ 2π 1 =β π₯ (2π)βΌ β1 + π₯ 2 π=0 πππ β 1 < π₯ β€ 1 β (2π β 1)βΌ 2π 1 =β π₯ (2π)βΌ β1 β π₯ 2 π=0 πππ β 1 < π₯ β€ 1 1 1β3 2 1β3β5 3 1β3β5β7 4 1β π₯+ π₯ β π₯ + π₯ ββ― 2 2β4 2β4β6 2β4β6β8 1 1β3 2 1β3β5 3 1β3β5β7 4 1+ π₯+ π₯ + π₯ + π₯ +β― 2 2β4 2β4β6 2β4β6β8 1 1β3 4 1β3β5 6 1β3β5β7 8 1 β π₯2 + π₯ β π₯ + π₯ ββ― 2 2β4 2β4β6 2β4β6β8 1 1β3 4 1β3β5 6 1β3β5β7 8 1 + π₯2 + π₯ + π₯ + π₯ +β― 2 2β4 2β4β6 2β4β6β8 Binomial Series +β π (1 + π₯) = β ( ) π₯ π π π π=0 πππ |π₯| < 1 and all complex r where π π πβπ+1 ( )=β π π 1 + ππ₯ + π(π β 1) 2 π(π β 1)(π β 2) 3 π₯ + π₯ +β― 2! 3! π=1 π(π β 1)(π β 2) β¦ (π β π + 1) = π! Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 3 Trigonometric Functions β π¬π’π§ (π) = β π=π (βπ)π πππ+π πππ πππ π (ππ + π)! 1β π₯ 2 π₯ 4 π₯ 6 π₯ 8 π₯ 10 π₯ 12 π₯ 14 + β + β + β +β― 2! 4! 6! 8! 10! 12! 14! π=π πβ1 22π (22π β 1) π΅2π 2πβ1 π₯ (2π)! π=1 π πππ |π₯| < 2 β (β1)π πΈ2π 2π sec (π₯) = β π₯ (2π)! π=0 π πππ |π₯| < 2 β (β1)πβ1 2 (22πβ1 β 1) π΅2π 2πβ1 csc (π₯) = β π₯ (2π)! tan (π₯) = β π₯ 3 π₯ 5 π₯ 7 π₯ 9 π₯ 11 π₯ 13 π₯ 15 + β + β + β +β― 3! 5! 7! 9! 11! 13! 15! β (βπ)π ππ ππ¨π¬ (π) = β π πππ πππ π (ππ)! β π₯β 1 2 17 7 62 9 π₯ + π₯3 + π₯5 + π₯ + π₯ 3 15 315 2,835 1,382 11 21,844 13 + π₯ + π₯ +β― 155,925 608,1075 (β1) 1+ 1 1 7 3 31 127 + π₯+ π₯ + π₯5 + π₯7 + β― π₯ 6 360 15,120 604,800 π=0 πππ 0 < π₯ < π β cot (π₯) = β π=0 (β1)π 22π π΅2π 2πβ1 π₯ (2π)! πππ 0 < π₯ < π π₯2 π₯4 π₯6 π₯8 π₯ 10 + 5 + 61 + 1,385 + 50,521 +β― 2! 4! 6! 8! 10! 1 1 1 2 5 1 4 β π₯ β π₯3 β π₯ β π₯7 β π₯9 β β― π₯ 3 45 189 4,725 2,835 Inverse Trigonometric Functions β (2π)! β1 sin (π₯) = β π 2 π₯ 2π+1 (2 π!) (2π + 1) π=0 πππ |π₯| β€ 1 1 π€ (π + ) 2 sin (π₯) = β π₯ 2π+1 (2π + 1) π! π β π=0 π β1 cos (π₯) = β sinβ1 (π₯) 2 πππ |π₯| β€ 1 β π₯+ π₯3 1 β 3π₯ 5 1 β 3 β 5π₯ 7 1 β 3 β 5 β 7π₯ 9 + + + +β― 2β3 2β4β5 2β4β6β7 2β4β6β8β9 β1 β βπ πππ§ (π) = β π=π (βπ)π ππ+π π (ππ + π) πππ |π| < π π π₯3 1 β 3π₯ 5 1 β 3 β 5π₯ 7 βπ₯β β β ββ― 2 2β3 2β4β5 2β4β6β7 π₯3 π₯5 π₯7 π₯9 + β + β β― πππ β 1 < π₯ < 1 3 5 7 9 π 1 1 1 1 1 β + 3 β 5 + 7 β 9 + β― πππ π₯ β₯ 1 2 π₯ 3π₯ 5π₯ 7π₯ 9π₯ π 1 1 1 1 1 β β + 3 β 5 + 7 β 9 + β― πππ π₯ < 1 2 π₯ 3π₯ 5π₯ 7π₯ 9π₯ sec β1 (π₯) = βπ ln(π₯) + π ln(2) β (2π + 1)! π₯ 2π+2 π β β π 4 4 [(π + 1)!]2 π₯ β π 3π 4 5π 6 βπ ln(π₯) + π ln(2) β π₯ 2 β π₯ β π₯ ββ― 4 32 96 π=0 Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 4 π 2 β (2π + 1)! π₯ 2π+2 π + β π 4 4 [(π + 1)!]2 csc β1 (π₯) = π ln(π₯) β π ln(2) + π ln(π₯) β π ln(2) + π π 2 3π 4 5π 6 + π₯ + π₯ + π₯ +β― 2 4 32 96 π=0 π β tanβ1 (π₯) 2 πππ |π₯| < 1 cot β1 (π₯) = Hyperbolic Functions π π₯3 π₯5 π₯7 π₯9 β π₯ + β + β + β― πππ β 1 < π₯ < 1 2 3 5 7 9 1 1 1 1 1 β 3 + 5 β 7 + 9 β β― πππ π₯ β₯ 1 π₯ 3π₯ 5π₯ 7π₯ 9π₯ 1 1 1 1 1 π + β 3 + 5 β 7 + 9 β β― πππ π₯ < 1 π₯ 3π₯ 5π₯ 7π₯ 9π₯ β π π₯ β π βπ₯ π₯ 2π+1 sinh (π₯) = =β πππ πππ π₯ (2π + 1)! 2 π₯ cosh (π₯) = π +π 2 βπ₯ π=0 β =β π=0 π₯ 2π πππ πππ π₯ (2π)! π π₯ β π βπ₯ tanh (π₯) = π₯ π + π βπ₯ β 2π 2π 2 (2 β 1) π΅2π 2πβ1 tanh (π₯) = β π₯ (2π)! π=1 π πππ |π₯| < 2 β πΈ2π 2π sech (π₯) = β π₯ (2π)! π=0 π |π₯| πππ < 2 β (2 β 22π ) π΅2π 2πβ1 1 csch (π₯) = + β π₯ (2π)! π₯ π₯+ π₯ 3 π₯ 5 π₯ 7 π₯ 9 π₯ 11 π₯ 13 π₯ 15 + + + + + + +β― 3! 5! 7! 9! 11! 13! 15! 1+ π₯ 2 π₯ 4 π₯ 6 π₯ 8 π₯ 10 π₯ 12 π₯ 14 + + + + + + +β― 2! 4! 6! 8! 10! 12! 14! π₯3 π₯5 π₯7 π₯9 π₯ 11 + 16 β 272 + 7,936 β 353,792 3! 5! 7! 9! 11! +β― 1 2 17 7 62 9 1,382 11 π₯ β π₯3 + π₯5 β π₯ + π₯ β π₯ 3 15 315 2,835 155,925 +β― π₯β2 π₯2 π₯4 π₯6 π₯8 π₯ 10 1 β + 5 β 61 + 1,385 β 50,521 +β― 2! 4! 6! 8! 10! 1 1 7 3 31 127 β π₯+ π₯ β π₯5 + π₯7 β β― π₯ 6 360 15,120 604,800 π=1 πππ 0 < |π₯| < π β 1 (β1)πβ1 22π π΅2π 2πβ1 coth (π₯) = + β π₯ (2π)! π₯ π=1 πππ 0 < |π₯| < π 1 1 1 2 5 1 4 + π₯ β π₯3 + π₯ β π₯7 + π₯9 β β― π₯ 3 45 945 4,725 2,835 Inverse Hyperbolic Functions β β1 sinh (π₯) = β π=0 (β1)π (2π)! π₯ 2π+1 (2π π!)2 (2π + 1) πππ |π₯| β€ 1 β (β1)π (2π β 1)βΌ 2π+1 sinhβ1 (π₯) = β π₯ (2π + 1)(2π)βΌ π₯β π₯3 1 β 3π₯ 5 1 β 3 β 5π₯ 7 1 β 3 β 5 β 7π₯ 9 + β + ββ― 2β3 2β4β5 2β4β6β7 2β4β6β8β9 π=0 Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 5 β π 2βπ cosh (π₯) = π β π β π₯ 2π+1 2 π! (2π + 1) β1 ππ π π₯ 3 π β 1 β 3π₯ 5 π β 1 β 3 β 5π₯ 7 βππ₯β β β ββ― 2 2β3 2β4β5 2β4β6β7 π=0 πππ |π₯| β€ 1 β π₯ 2π+1 β1 tanh (π₯) = β 2π + 1 π₯+ π=0 π₯ 3 π₯ 5 π₯ 7 π₯ 9 π₯ 11 π₯ 13 π₯ 15 + + + + + + +β― 3 5 7 9 11 13 15 πππ |π₯| < 1, π₯ β ±1 β1 sech (π₯) = β ln(π₯) + ln(2) β (2π + 1)! π₯ 2π+2 1 + β π 4 4 [(π + 1)!]2 1 3π 5π β ln(π₯) + ln(2) + π₯ 2 + π₯ 4 + π₯ 6 + β― 4 32 96 cschβ1 (π₯) = β ln(π₯) + ln(2) β 1 (β1)π (2π + 1)! π₯ 2π+2 + β 4 4π [(π + 1)!]2 1 3π 5π β ln(π₯) + ln(2) + π₯ 2 β π₯ 4 + π₯ 6 β β― 4 32 96 π=0 π=0 β ππ π₯ 2π+1 coth (π₯) = β + β 2 2π + 1 β1 =β π=0 Bernoulli Numbers π΅0 = 1 1 π΅1 = β 2 1 π΅2 = 6 1 π΅4 = β 30 1 π΅6 = 42 1 π΅8 = β 30 5 π΅10 = 66 691 π΅12 = β 2,730 7 π΅14 = 6 3,617 π΅16 = β 510 438,675 π΅18 = 798 174,611 π΅20 = β 330 854,513 π΅22 = 138 ππ π₯ 3 π₯ 5 π₯ 7 π₯ 9 π₯ 11 π₯ 13 +π₯+ + + + + + +β― 2 3 5 7 9 11 13 Euler Numbers πΈ0 = 1 πΈ1 = 0 πΈ2 = β1 πΈ3 = 0 πΈ4 = 5 πΈ5 = 0 πΈ6 = β61 πΈ8 = 1,385 πΈ10 = β50,521 πΈ12 = 2,702,765 πΈ14 = β199,360,981 πΈ16 = 19,391,512,145 πΈ18 = β2,404,879,675,441 πΈ20 = 370,371,188,237,525 πΈ22 = β69,348,874,393,137,901 πΈ2π+1 = 0 Gamma Function 1 π€0 = π€ ( ) = βπ 2 3 βπ π€1 = π€ ( ) = 2 2 5 3βπ π€2 = π€ ( ) = 2 4 7 15βπ π€3 = π€ ( ) = 2 8 9 105βπ π€4 = π€ ( ) = , 2 16 11 945βπ π€5 = π€ ( ) = 2 32 13 10,395βπ π€6 = π€ ( ) = 2 64 15 135,135βπ π€7 = π€ ( ) = 2 128 17 2,027,025βπ π€8 = π€ ( ) = 2 256 19 34,459,425βπ π€9 = π€ ( ) = 2 512 21 654,729,075βπ π€10 = π€ ( ) = 2 1,024 Generating Function Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 6 β π€(π‘) = β« π₯ π‘β1 π βπ₯ ππ₯ β π‘ π΅π π =β π‘ π‘ π β1 π! π=0 0 β 1 2 πΈπ π = π‘ =β π‘ βπ‘ cosh(π‘) π + π π! π=0 Recursive Definition π΅π (π) Iterated Sum πβ1 πΈ2π π=0 π (β1)π (π β 2π)2π+1 = π β β( ) π 2π π π π π π΅π (π) = ππ β β ( ) π πβπ+1 π΅0 (π) = 1 2π+1 π π=1 π=0 (2π)! 1 π€ ( + π) = π βπ 2 4 π! (π β 2)βΌ π π€( ) = πβ1 βπ 2 2 2 Recursive Definition π€(π + 1) = π β π€(π) π πβ2 πβ2 )βπ€( ) π€( ) = ( 2 2 2 1 π€ ( ) = βπ 2 References: https://www.wolframalpha.com https://en.wikipedia.org http://ddmf.msr-inria.inria.fr/1.9.1/ddmf http://web.mit.edu/kenta/www/three/taylor.html Copyright © 2015-2016 by Harold Toomey, WyzAnt Tutor 7
© Copyright 2026 Paperzz