Integers and Absolute Value (pp. 14–17)

m708cs_c01_052_054
■
9/6/06
7:05 PM
Page 53
1-3 Integers and Absolute Value
(pp. 14–17)
EXAMPLE
EXERCISES
Simplify each expression.
⏐9⏐ ⏐3⏐
93
6
13. ⏐7 6⏐
15. ⏐15⏐ ⏐19⏐
14. ⏐8⏐ ⏐7⏐
16. ⏐14 7⏐
17. ⏐16 2⏐
18. ⏐7⏐ ⏐8⏐
⏐9⏐ 9 and ⏐3⏐ 3
Subtract.
EXERCISES
Add.
Add.
8 2
6
Find the difference of⏐8⏐ and⏐2⏐.
8 2; use the sign of the 8.
1-5 Subtracting Integers
■
20. 3 (9)
21. 4 (7)
22. 4 (3)
Evaluate.
24. k 11 for k 3
25. 6 m for m 2
NS1.2,
(pp. 22–25)
EXAMPLE
Subtract.
Add the opposite of 5.
5 3; use the sign of the 5.
Evaluate.
9 d for d 2
Substitute.
9 2
9 (2)
Add the opposite of 2.
11
Same sign
26. 7 9
27. 8 (9)
28. 2 (5)
29. 13 (2)
30. 5 17
31. 16 20
Evaluate.
32. 9 h for h 7
33. 12 z for z 17
1-6 Multiplying and Dividing Integers
EXAMPLE
Multiply or divide.
■
4(9)
36
NS2.5
EXERCISES
Subtract.
3 (5)
3 5
2
19. 6 4
23. 11 (5) (8)
Evaluate.
4 a for a 7
Substitute.
4 (7)
11
Same sign
■
NS1.2, AF1.3
(pp. 18–21)
EXAMPLE
■
NS2.5
Simplify the expression |9| |3|.
1-4 Adding Integers
■
NS1.1,
The signs are different.
The answer is negative.
33
■ 11
The signs are the same.
3
The answer is positive.
NS1.2
(pp. 26–29)
EXERCISES
Multiply or divide.
34. 7(–5)
72
35. 4
36. 4(13)
100
37. 4
38. 8(3)(5)
10(5)
39. 25
Study Guide: Review
53