AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH © 2014, Science Huβ, http://www.scihub.org/AJSIR ISSN: 2153-649X, doi:10.5251/ajsir.2014.5.1.13.22 Estimation of Shear Wave Velocity for Lithological Variation in the NorthWestern Part of the Niger Delta Basin of Nigeria Horsfall, O.I, Omubo-Pepple, V.B. and Tamunobereton-ari, I. Department of Physics, Rivers State University of Science and Technology, 500001, Port Harcourt, Rivers State, Nigeria Corresponding e-mail: [email protected] ABSTRACT This paper presents the estimation of Shear wave velocity analysis for the prediction of lithological discrimination of the subsurface geology from two petroleum wells AK-1 and AK-2 located in the North-Western part of the Niger Delta. Gamma ray log was used for the lithological differentiation. Sonic log was used for computation of compressional wave velocity. Shear wave velocity was determined from compressional wave velocity. The analysis of shear and compressional wave velocity shows a general conventional trend of increase in velocity with depth but varies at some depth due to lithological variation, heterogeneity and anisotropic nature of the earth. Compressional wave velocity Vp is higher than shear wave velocity Vs in both sandy and shaly formations for the two wells under consideration. The compressional wave velocity values of shale beds of well AK-1, and well AK-2 varies from 3485 to 4830m/s, and 2339 to 3167m/s respectively while compressional wave velocity values of sand beds for the same wells varies from 3304 to 6767m/s, and 2093 to 3932m/s and respectively. The shear wave velocity values of shale beds of well AK-1, and well AK-2 varies from 2682 to 3717m/s, and 1799 to 2437m/s respectively while shear wave velocity values of sand beds for the same wells varies from 2656 to 5441m/s, 1682 to 3161m/s and 1826 to 2809m/s respectively. This implies that the shear wave velocity is slower than the compressional wave velocity. Keywords: Shear wave, Compressional wave,Velocity, lithology,Well Logs, Transit Time, INTRODUCTION Velocity is one of the most important petrophysical parameters used in oil-field optimization or other geophysical surveys to easily determine and predict horizons, faults, facies, unconformities, stratigraphic boundaries, geologic structures, fluid contents etc Tamunobereton-ari et al(2010). The knowledge of velocity at any depth is very important in the recognition of reflectors and refractors with dip or plane horizontal beds. Tamunobereton-ari et al (2011). The optimization of oil-field operations has proven successful for the effective imaging of subsurface geology by characterizing the propagation of waves that travel through the earth material. When sound waves impinge on a rock material, the material undergoes stress, deforms and returns to its original shape ,the sound waves is then picked by a receiver from which it is stored and used to measure the elastic properties of rock material. The elastic properties of a rock material includes the Bulk modulus, Lame constant, Poisson’s ratio, Shear modulus, and Young’s modulus. As sound waves encounter a medium of different elastic properties and density, compressional and shear waves are generated. The compressional waves travel parallel to its particle displacement, Pwaves propagate through solids, liquids, and gaseous media. These waves could be produced by earthquakes and recorded by seismographs. Its velocity is faster than shear wave velocity. The shear waves travel perpendicular to its particle displacement. In practical situations shear wave data have proven to have little or no information thus, the rock physicist enhanced the usefulness of shear wave data by combining it with other rock related properties such as acoustic impedance, elastic impedance, Lame elastic constant, shear modulus etc. Shear wave velocity can be measured directly from sonic well logs (prescribed), core data laboratory Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 analysis or predicted from compressional wave velocity data. Brigaud et al. (1990) has observed that geophysical well logs provide a better representation of in-situ conditions in a lithological unit than laboratory measurements because they sample a finite volume of rock around the well and provide a continuous record with depth rather than discrete sample points. Laboratory measurements have a number of setbacks. A large number of samples must be measured to characterize adequately the stratigraphic section; the rock properties determined in laboratory measurements must still be modified to apply to in-situ conditions and; some lithologies, mostly in shales, may be altered in the drilling and cutting recovery stage so that laboratory measurements contain systematic error. Blackwell and Steel (1986) and the assign a fraction of this to the total interval within the sand-shale baselines which is then expressed as a percentage. The %(shale/sand) is computed from the gamma ray log as: %Shale ( ) (1) where %shale = volume of shale in the formation by percentage GRlog = Gamma Ray Log Reading GRmax = Gamma Ray Log Reading in Shale Zone GRmin =Gamma Ray Log Reading in clean Sand Zone from the above equation, %sand =100% - %shale (2) Numerous studies have shown that the ratio of compressional wave velocity (vp) to shear wave velocity (vs) is indicative of lithology. Pickett (1963) in a detailed work established the (vp/vs) values of 1.9 for limestone, 1.8 for dolomite and 1.6 for sandstone thereby differentiating the various lithologies. Lithological presumptions are made based on which percentages is greater than or equal to 50% The Compressional wave velocity(Vp) was determined from the inverse of sonic transit time from the logs. The sonic log is simply a recording of the time required for a sound wave to traverse one foot of a formation. Rafavich et al (1984) in a detailed laboratory study of velocity relationships with petrographic character in carbornates concluded that the (vp/vs) ratio successfully differentiated limestone and dolomite. The equation below was used to compute for the compressional wave velocity (Vp): Eastwood and Castagna (1983) studied fullwaveform sonic logs in Appalachian limestone and observed that shear wave amplitude was attenuated in shale zones, and thus it could be used for lithology discrimination. (3) Where Compressional wave velocity (m/s) and Transit time (µs/m) METHODOLOGY To achieve the goal of this study, data from two exploratory well logs AK-1 & AK-2 from multinational oil company operating within the North-Western Delta region of Nigeria was used to evaluate the parameters of interest. 30ft (10m) depth interval was chosen to digitize the records on the log runs through the logged depth. Delineation of the lithology of the formation was done using the gamma ray log runs for the different wells. Basically the gamma ray log is useful for locating shales and non-shaly beds, it reflects the shale content of sedimentary formations. Clean sandstones normally exhibits low level of natural radioactivity, while shale show higher levels of radioactivity due to adsorption of heavy radioactive elements. However, the amount of each lithofacies is estimated by counting the interval of each lithofacies The Shear wave velocity (Vs) was computed from the compressional wave velocity using the Castagna and Greeberg’s(1993) relations for sand and shale beds as shown below; ( ) (Sand beds) (4) ( ) (Shale beds) (5) RESULTS AND DISCUSSION The results obtained from the study are presented in Tables 1 and 2 showing the depth, GR(API)readings, percentage(%)Shale and Sand of the formation, interval travel times, Compressional wave velocities 14 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 (Vp) and Shear wave Velocities(VS). Figures 1,2,4 and 5 showed trends of increasing shear and compressional wave velocities with an increase in depth; Figures 3 and 6 also showed a linear trend of the plot of shear wave velocity against compressional wave velocity. Transit time decreases with increasing depths. Compressional velocity is greater than shear wave velocity in the study area. Increases in shear and compressional wave velocities can be used in identification of pore fluids type in porous reservoir. Also the Vp to Vs ratio which is a key parameter for lithological and fluid prediction shows that,Poisson’s ratio (VP/VS) is greater in shaly formation than in sandy formations, The Poisson’s ratio (Vp/VS) is nearly constant throughout the formation which is indicative of dry sandstone. The computed Poisson’s ratio for sandy and shaly formations for the two wells are 1.24 and 1.30 respectively. Table:1 Showing Depth, Interval Transit times, GR(API), %shale and sand, compressional wave velocities (Vp) and shear wave velocities(Vs) relationship for well AK-1. Depth (m) DT (µs/ft) GR (API) Shale % Sand % 1216 60.23 48 32 68 5062 4070 1.24 1226 76.40 22 14 86 3991 3208 1.24 1235 75.08 22 14 86 4061 3264 1.24 1244 77.47 23 14 86 3936 3164 1.24 1253 66.07 26 17 83 4614 3710 1.24 1262 75.54 73 48 52 4036 3245 1.24 1271 81.24 26 17 83 3753 3017 1.24 1280 77.22 55 36 64 3948 3174 1.24 1290 77.18 26 17 83 3950 3176 1.24 1299 76.97 29 19 81 3961 3184 1.24 1308 76.21 29 19 81 4001 3216 1.24 1317 77.38 26 16 84 3940 3168 1.24 1326 67.79 70 46 54 4498 3616 1.24 1335 87.47 77 51 49 3485 2682 1.30 1345 78.18 24 15 85 3900 3135 1.24 1354 78.81 24 15 85 3868 3110 1.24 1363 78.22 33 21 79 3898 3133 1.24 1372 75.03 21 13 87 4063 3267 1.24 1381 72.51 21 13 87 4205 3380 1.24 1390 75.54 22 14 86 4036 3245 1.24 1399 74.90 19 12 88 4071 3273 1.24 1409 73.14 21 14 86 4168 3351 1.24 1418 74.09 23 15 85 4115 3308 1.24 1427 76.21 28 18 82 4000 3216 1.24 15 (m/s) (m/s) () Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 1436 69.75 43 28 72 4371 3514 1.24 1445 74.09 23 15 85 4115 3308 1.24 1454 69.36 20 13 87 4396 3534 1.24 1463 71.33 22 14 86 4274 3436 1.24 1473 71.33 21 13 87 4274 3436 1.24 1482 77.89 29 19 81 3914 3147 1.24 1491 69.52 17 11 89 4386 3526 1.24 1500 69.75 21 13 87 4371 3514 1.24 1509 71.49 31 20 80 4265 3429 1.24 1518 76.45 29 19 81 3988 3206 1.24 1527 72.12 21 14 86 4227 3399 1.24 1537 70.70 24 15 85 4312 3467 1.24 1546 66.37 19 12 88 4594 3693 1.24 1555 69.28 18 11 89 4400 3538 1.24 1564 68.66 32 21 79 4440 3570 1.24 1573 72.93 26 17 83 4180 3361 1.24 1582 68.77 33 21 79 4433 3564 1.24 1591 70.40 27 17 83 4331 3482 1.24 1601 65.76 26 17 83 4636 3728 1.24 1610 71.79 28 18 82 4247 3414 1.24 1619 67.24 24 16 84 4534 3645 1.24 1628 71.03 71 47 53 4292 3451 1.24 1637 72.62 36 23 77 4198 3375 1.24 1646 67.96 21 14 86 4486 3606 1.24 1655 69.49 24 16 84 4387 3527 1.24 1665 68.19 20 13 87 4471 3595 1.24 1674 72.67 39 25 75 4196 3373 1.24 1683 66.36 76 50 50 4594 3694 1.24 1692 63.85 45 29 71 4775 3839 1.24 1701 77.16 53 35 65 3951 3177 1.24 1710 74.09 21 14 86 4115 3308 1.24 1720 70.94 22 14 86 4298 3455 1.24 1729 63.85 29 19 81 4775 3839 1.24 1738 66.14 21 13 87 4609 3706 1.24 1747 69.26 21 14 86 4402 3539 1.24 1756 63.61 20 13 87 4793 3853 1.24 1765 78.81 79 52 48 3868 2977 1.30 16 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 1774 71.33 30 20 80 4274 3436 1.24 1784 65.52 61 40 60 4653 3741 1.24 1793 65.58 91 60 40 4649 3577 1.30 1802 66.52 70 46 54 4583 3685 1.24 1811 73.44 22 14 86 4151 3338 1.24 1820 69.49 83 55 45 4387 3376 1.30 1829 74.36 33 21 79 4100 3296 1.24 1838 45.06 22 14 86 6767 5441 1.24 1848 66.31 24 15 85 4598 3697 1.24 1857 92.28 21 13 87 3304 2656 1.24 1866 72.58 41 27 73 4200 3377 1.24 1875 63.12 87 58 42 4830 3717 1.30 1884 64.45 27 18 82 4731 3803 1.24 1893 69.55 41 27 73 4383 3524 1.24 1902 65.61 87 58 42 4647 3576 1.30 1912 72.26 26 17 83 4219 3392 1.24 1921 64.01 34 22 78 4763 3830 1.24 1930 70.01 58 38 62 4355 3501 1.24 1939 66.21 84 56 44 4605 3543 1.30 1948 80.54 49 32 68 3785 3043 1.24 1957 68.77 62 41 59 4433 3564 1.24 1966 63.06 36 23 77 4835 3887 1.24 1976 67.55 32 21 79 4513 3629 1.24 1985 70.94 19 12 88 4298 3455 1.24 1994 66.42 20 13 87 4590 3690 1.24 2003 61.64 20 13 87 4946 3976 1.24 2012 63.26 46 30 70 4820 3875 1.24 2021 65.90 27 18 82 4627 3720 1.24 2030 65.35 48 32 68 4666 3751 1.24 2040 62.27 69 46 54 4896 3936 1.24 2049 77.45 48 32 68 3937 3165 1.24 2058 66.37 32 21 79 4594 3693 1.24 2067 64.30 18 11 89 4741 3812 1.24 2076 67.94 29 19 81 4488 3608 1.24 2085 71.88 55 36 64 4241 3410 1.24 17 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 2095 46.05 37 24 76 6620 5323 1.24 2104 46.50 25 16 84 6557 5272 1.24 2113 70.31 77 51 49 4336 3486 1.24 2122 69.52 73 48 52 4386 3526 1.24 Table 2: Showing Depth, Interval Transit times, GR(API), %shale and sand, compressional wave velocities(Vp) and shear wave velocities(Vs) relationship for well AK-2. Sand Depth (m) DT (µs/ft) GR (API) Shale % 1372 141.18 27 17 83 2159 1736 1.24 1381 136.72 27 18 82 2230 1792 1.24 1390 130.36 83 55 45 2339 1799 1.30 1399 123.71 26 17 83 2464 1981 1.24 1409 124.37 25 16 84 2451 1970 1.24 1418 119.11 40 26 74 2560 2057 1.24 1427 118.53 26 17 83 2572 2068 1.24 1436 122.55 26 17 83 2488 2000 1.24 1445 114.98 25 16 84 2652 2131 1.24 1454 128.72 35 23 77 2369 1904 1.24 1463 120.35 30 20 80 2533 2036 1.24 1473 117.92 24 16 84 2585 2078 1.24 1482 120.44 23 15 85 2531 2035 1.24 1491 120.48 24 16 84 2531 2034 1.24 1500 120.28 30 20 80 2535 2037 1.24 1509 125.30 25 16 84 2433 1956 1.24 1518 119.84 20 13 87 2544 2045 1.24 1527 118.82 24 15 85 2566 2063 1.24 1537 107.42 28 18 82 2838 2282 1.24 1546 117.24 24 15 85 2600 2090 1.24 1555 117.10 26 17 83 2604 2093 1.24 1564 109.90 30 19 81 2774 2230 1.24 1573 111.92 23 15 85 2724 2190 1.24 1582 123.67 75 50 50 2465 1982 1.24 1591 116.68 62 41 59 2613 2100 1.24 1601 112.17 33 21 79 2718 2185 1.24 % 18 (m/s) (m/s) () Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 1610 118.22 34 22 78 2579 2073 1.24 1619 94.35 21 13 87 3231 2598 1.24 1628 122.36 23 15 85 2492 2003 1.24 1637 110.97 26 17 83 2747 2208 1.24 1646 114.13 106 71 29 2671 2055 1.30 1655 114.28 24 16 84 2668 2144 1.24 1665 113.90 80 53 47 2677 2059 1.30 1674 114.75 27 18 82 2657 2136 1.24 1683 109.43 37 24 76 2786 2240 1.24 1692 120.08 65 43 57 2539 2041 1.24 1701 108.48 79 52 48 2810 2162 1.30 1710 131.31 75 50 50 2322 1866 1.24 1720 122.55 37 24 76 2488 2000 1.24 1729 122.15 27 18 82 2496 2006 1.24 1738 117.90 29 19 81 2586 2079 1.24 1747 119.45 43 28 72 2552 2052 1.24 1756 118.04 61 40 60 2583 2076 1.24 1765 125.04 81 54 46 2438 1960 1.24 1774 116.48 26 17 83 2617 2104 1.24 1784 115.45 30 19 81 2641 2123 1.24 1793 118.72 46 30 70 2568 2064 1.24 1802 106.33 81 54 46 2867 2206 1.30 1811 122.33 63 42 58 2492 2003 1.24 1820 107.81 32 21 79 2828 2273 1.24 1829 119.76 21 13 87 2546 2046 1.24 1838 107.73 37 24 76 2830 2275 1.24 1848 111.49 29 19 81 2735 2198 1.24 1857 118.64 34 22 78 2570 2066 1.24 1866 110.52 87 58 42 2759 2122 1.30 1875 113.16 42 27 73 2694 2166 1.24 1884 110.75 33 22 78 2753 2213 1.24 1893 105.30 32 21 79 2895 2327 1.24 1902 109.26 29 19 81 2790 2243 1.24 1912 77.54 47 31 69 3932 3161 1.24 1921 106.01 81 53 47 2876 2213 1.30 19 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 1930 120.06 83 55 45 2539 1954 1.30 1939 112.12 49 32 68 2719 2186 1.24 1948 109.63 35 23 77 2781 2235 1.24 1957 111.70 31 20 80 2729 2194 1.24 1966 112.38 26 17 83 2713 2181 1.24 1976 110.52 20 13 87 2759 2217 1.24 1985 113.51 27 18 82 2686 2159 1.24 1994 108.31 51 34 66 2815 2263 1.24 2003 110.69 84 56 44 2754 2119 1.30 2012 113.81 32 21 79 2679 2153 1.24 2021 105.97 22 14 86 2877 2313 1.24 2030 111.66 28 18 82 2730 2195 1.24 2040 110.12 40 26 74 2769 2226 1.24 2049 106.95 29 19 81 2851 2292 1.24 2058 107.42 24 15 85 2838 2282 1.24 2067 111.42 34 22 78 2736 2200 1.24 2076 107.18 26 17 83 2845 2287 1.24 2085 111.55 66 44 56 2733 2197 1.24 2095 111.19 81 53 47 2742 2110 1.30 2104 118.18 83 55 45 2580 1985 1.30 2113 122.36 76 50 50 2492 1917 1.30 2122 122.41 78 52 48 2491 1916 1.30 2131 124.59 76 50 50 2447 1883 1.30 2140 120.58 85 56 44 2528 1945 1.30 2149 114.46 82 54 46 2664 2049 1.30 2159 116.57 85 56 44 2616 2012 1.30 2168 120.35 83 55 45 2533 1949 1.30 2177 145.68 26 17 83 2093 1682 1.24 2186 127.98 30 20 80 2382 1915 1.24 2195 107.90 86 57 43 2826 2174 1.30 2204 104.30 83 55 45 2923 2249 1.30 2213 107.58 87 58 42 2834 2180 1.30 2223 116.16 28 18 82 2625 2110 1.24 2232 112.36 24 16 84 2714 2181 1.24 2241 96.27 81 54 46 3167 2437 1.30 20 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 2250 103.03 24 16 84 2959 2379 1.24 2259 97.18 48 31 69 3137 2522 1.24 2268 110.07 42 28 72 2770 2227 1.24 2277 99.54 88 59 41 3063 2357 1.30 Shear velocity (m/s) 2000 4000 0 0 0 500 500 Depth (m) Depth (m) 0 Compressional velocity (m/s) 2000 4000 6000 8000 1000 1500 6000 1000 1500 2000 2000 2500 2500 6000 5000 4000 3000 2000 1000 0 Fig.2: Depth Vs Shear Wave Velocity(VS) for Well AK -1 y = 0.8037x - 9.3935 R² = 0.9912 0 2000 4000 6000 0 Compressional velocity (m/s) 2000 4000 6000 0 Depth (m) Shear velocity (m/s) Fig.1: Depth Vs Compressional Wave Velocity (VP) for Well AK -1 8000 500 1000 1500 2000 Compressional velocity (m/s) 2500 Fig.3: Shear WaveVelocity(VS) Vs Compressional wave Velocity(VP) for well AK-1 Fig. 4: Depth Vs Compressional wave Velocity(VP) for well AK-2 21 Am. J. Sci. Ind. Res., 2014, 5(1): 13-22 3500 Shear velocity (m/s) 0 Shear velocity (m/s) 1000 2000 3000 4000 0 Depth (m) 500 1000 1500 y = 0.7832x + 33.482 R² = 0.9549 3000 2500 2000 1500 1000 500 0 0 2000 2000 4000 6000 Compressional velocity (m/s) 2500 Fig.5: Depth Vs Shear Wave Velocity(VS) for Well AK-2 AK-2 Fig.6: Shear Wave Velocity(VS) Vs Compressional Wave Velocity(VP) for well CONCLUSION geophysical well logs: AAPG Bulletin. Vol. 74, no.9, P, 1459 – 1477. The knowledge of shear and compressional wave velocities, and Poisson ratios can provide valuable information about litholgy differention and physical properties of rocks, including how rocks will deform under a given stress. This type of information can be valuable during recognition of reservoir fluid contacts, and design and construction phases of building projects. The study has provided information on the linearity in trend of the variation of shear and compressional wave velocities with depth in a given lithology.These velocities increases with depth for both sand and shalebeds. Shear wave velocity can only be determined for solids or highly viscous medium. Compressional wave velocity Vp is higher than shear wave velocity Vs in both sandy and shaly formations for the two wells under consideration. Eastwood, R.L. and Castagna, J.P. (1983); Bases for interpretation of (VP/VS) ratios in complex th lithologies. Soc. Prof. Well Log analysts 24 Annual logging Symposium. Greenberg, M.L, and Castagna, J.P. (1993); ShearWear Velocity Estimation in porous Rocks. Theoretical formulation, Preliminary verification and applications. Geophys. Prosp., 40, 195-209. Pickett, G. (1963), Acoustic Character Logs and their applications in formation evaluation. J. Petr. Tech., 659 – 667. Rafavich, F., Kendall,C.H. St. C., and Todd, T.P. (1984). The relationship between acoustic properties and the petrographic character of carbonate rock: Geophysics, 49, 1622 – 1636. Tamunobereton-ari, I., Omubo-Pepple, V.B. and Uko, E.D. (2010). The Influence of Lithology and Depth on Acoustic Velocities in South-East Niger Delta, Nigeria. American Journal of Scientific and Industrial Research 1.(2), 279 – 292. REFERENCES Blackwell, D.D., and Steel, J.L. (1986); Thermal Conductivity of sedimentary rock-measurement and significance in thermal history of sedimentary Basins; Methods and Case Histories. Springer, New York NY PP.13-36. Tamunobereton-ari, I., Omubo-Pepple, V.B. and Uko, E.D. (2011).Determination of the Variability of Seismic velocity with Lithology in the SouthWestern part of the Niger Delta Basin of Nigeria using well logs. Journal of Basic and Applied Scientific Research 1(7), 700 – 705. Brigaud, F. Chapman, D.S. and Le Douaran, S. (1990); Estimating thermal conductivity in Sedimentary Basin using Lithological data and 22
© Copyright 2026 Paperzz