A) 56 B) 16 A) ln 5(9) A)5 Quiz 22 A) C) 23 D) 15 1 8 Example 1: f (x) = 3 B) C) 23 C)ln (9) C)3 1 5 B)1.629 Math 1431 D) ln 5(5) A) 56 B) 16 LAB session 13 B) ln 9(5) B) 1 A)1.574 C) 18 A) ln 5(9) D)0 D) A)5 5 8 A) x2 1 8 Compute the upper Riemann sum for the given function f (x) = 3 to the partition P = [0; 14 ; 34 ; 1] 1 B) D) ln 5(5) C)ln (9) C)3 1 5 D)1.614 D) 15 B) ln 9(5) B) 1 C)1.589 C) 18 D)0 D) 5 8 x2 over the interval x∈[0,1] with respect P = [0; 4 ; 34 ; 1] f (x) = sin (x) f (x) = sin (x) P = [0; ⇡3 ; 2⇡ ; ⇡] 3 P = [0; ⇡3 ; 2⇡ ; ⇡] 3 n=4 n=4 Z 8 3x + 5 dx 0 Z 8 3x + 5 dx 0 13 13 P = [0; Example 2: 1 3 ; ; 1] 4 4 f (x) = sin (x) Compute the lower Riemann sum for the given function respect to the partition P = [0; ⇡ ; 2⇡ ; ⇡] 3 n=4 3 f (x) = 3 x P = [0; 14 ; 34 ; 1] f (x) = sin (x) over the interval x∈ [0, ⇡] with P = [0; ⇡3 ; 2⇡ ; ⇡] 3 n=4 Z 8 3x + 5 dx 0 Z 8 3x + 5 dx 0 13 13 A)( 1, 15 ) B C)( 1 , 1) 5 D A)4 B) 5 16 A)( 2.2, 0.6) [ C)( 1, 2) D) Example 3: Estimate P = [0; ⇡3 ; 2⇡ ; ⇡] 3 Z 8 3x + 5 dx by the left endpoint estimate with n = 4 0 Z 8 3x + 5 dx 0 13 13 A) Question # 4 1 + x2 lim 2 x!1 A) 0.5 3x B) 0.25 9) 1 5 C) 18 D) 5 8 over the interval x∈[-1; 1] with respect to P = [0; 14 ; 34 ; 1] p .589 D) B) Compute the lower Riemann sum for the given function f (x) = x2 the uniform partition of 5 points (including the endpoints) C) 0.75 D) 1 5x 4 tan (x) lim x!0 2 sin (x) 10x 0 1 8 f (x) = sin (x) P = [0; ⇡3 ; 2⇡ ; ⇡] 3 n=4 D)1.614 Z D) ln 5(5)# Question 8 3x + 5 dx 0 What is a best way to estimate the area under the line? A) midpoint B) left endpoint 5 8 C) right endpoint D) all give the same accuracy 13 Question # Estimate the integral by the midpoint estimate with n = 3 Z 2 x + 1 dx 1 A) 1.5 B) -2.5 C) 3.75 D) 4.5 Z x + 1 dx = 3 2 1 x +Z1 dx = 3 5 0 f(x) dx = 3 GivenZ that 7 0 f(x)Zdx7 = 2 5 Z Z 2 Z 5 4: x + 1 dx = 3 Example 1 f(x)Zdx = 3 Find 1 f(x) dx = 2 7 0 5 f(x)Zdx7 and Z 5 f(x) dx = 3 0 7 f(x) dx = 2 5 Z 7 f(x) dx 0 f(x) dx 0 13 13 13 f(x) dx = 2 Z 0 Z 3 Examplef(x) 5: dx = 5 Z 0 1 f(x) dx = 2 GivenZ that 5 0 f(x) dx = 4 3 Z Find Z 1 Z Z f(x) dx = 5 0 Z 0 3 f(x) dx = 5 0 5 5 9 = 7 f(x)Zdx f(x) dx = 13 2 Z 9 2 Z 5 f(x) dx f(x) dx = 7 5 3 Z Z f(x) dx =f(x) 4 dx 3 5 3 f(x) dx f(x) = 1dx = 4 2 6 1 Z 1 Z 3 f(x) dx = 1 f(x) dx =7 2 6 Z 6 f(x) dx = 7 f(x) 1 dx 2 Z 6 f(x) dx 2 1 f(x) dx 5 2 9 Z Z Z 5 f(x) dx = 4 3 Z f(x) dx = 4 f(x) dx = 13 Z f(x) dx = 5 0 3 9 2 1 Z Z and Z 3 5 3 f(x) dx Z f(x) dx = 2 f(x) dx = 4 f(x) dxZ =1 13 2 Z 3 f(x) Z 5dx 5 9 Z Z and Z 0 1 Z f(x) dx = 13 2 Z f(x) dx = 7 Z 9 f(x) dx 5 3 f(x) dx = 4 1 3 f(x) dx = 1 2 6 f(x) dx = 7 1 Z f(x) dx 5 9 5 2 1 Z Z Z 5 f(x) dx = 7 2 Z 9 f(x) dx 5 3 f(x) dx = 4 1 3 f(x) dx = 1 2 6 f(x) dx = 7 1 Z 6 f(x) dx 2 6 f(x) dx 2 14 14 14 14 Z f(x) dx = 4 1 f(x) dx Z 5 9 2 GivenZ that f(x) dx = 13 5 2 Z Z Z Z 1 f(x) dx Z 9 6: Example 5 f(x) dx Z = 13 Find 5 3 Z f(x) dx Z =7 3 2 6 1 Z 5 f(x) dx 5 f(x) dx Z 3= 4 f(x) dx = 4 1 f(x) dx Z 3= 1 f(x) dx = 1 2 f(x) dx Z 6= 7 f(x) dx = 7 6 2 2 Z 2 f(x) dx Z 9 5 and f(x) dx = 13 f(x) dx = 7 9 3 1 2 9 1 f(x) dx Z 6 f(x) dx Z Z Z 5 f(x) dx = 7 2 Z 9 f(x) dx 5 3 f(x) dx = 4 1 3 f(x) dx = 1 2 6 f(x) dx = 7 1 Z 6 f(x) dx 2 2 14 14 14 f(x) dx = 7 5 Z 3 1 2 Z f(x) dxZ=9 4 f(x) dx Example Z 3 7: 5 Z 3= 1 f(x) dx 2 f(x) dx = 4 Given that 1 Z 6 Z 3= 7 f(x) dx 1 f(x) dx = 1 2 Z 6 Z dx 6 f(x) Find 2 f(x) dx = 7 1 Z 6 f(x) dx f(x) dx = 4 5 and Z Z 1 Z 3 f(x) dx = 4 1 3 f(x) dx = 1 2 6 f(x) dx = 7 1 Z and Z 3 f(x) dx = 1 2 6 f(x) dx = 7 1 Z 6 f(x) dx 2 6 f(x) dx 2 2 14 14 14 14 f(x) 4 6 f(x)dxdx= = 0 Z 0 Question # Z Z 58 f(x) Zdx3 = 6 f(x) dx f(x)=dx7 = 4 Given0 that Z 5 8 and 0 Z Zf(x) 3 dx = 7 dx = 6 Z 03 f(x) Find 5 f(x) dx Z Z 83 9 5 Z 8 f(x) dx = 4 0 f(x) dx = 7 f(x) dx Z 55 8 Z f(x) dx = 4 0 5 f(x) dx = 6 Z0 3 Z 8 0 5 Z 2 A) 14 f(x) dx 2 2 Z Z 0 f(x) dx = 9 1 B) 8 Z C) 11 Z 0 Z0 Z f(x) dx = 6 5 f(x) dx = 6 8 f(x) dx = 7 0 Z5 Z 3 f(x) dx = 6 f(x) dx 7 f(x) dx = 4 5 8 Z f(x) dx = 7 3 f(x) dx 5 5 1 7 and f(x) dx = 4 f(x) dx = 7 Z 88 Z D)11 9 f(x) dx = 7 A) 9Z 29 B) 10 C) -9 0 f(x) dx 5 f(x) dx = 13 dx 8 13 Z 8= Z f(x) 5 2 Z 2 3 Z 9 f(x) dx = 7 Z =7 5 Z 5 f(x)5 dx f(x) dx f(x) dx = 13 8 2 f(x) dx = 7 2Z f(x) dx = 3 7 Z 29 2 Z 9 Z 5 f(x) dx Zf(x) 9 dx = 13 dx = 7 Z 9 f(x)8f(x) dx 2 2 f(x) dx Z 9Zdx 5 f(x) Z 55 9 f(x)f(x) dxdx = 13 Z 3 f(x) dx = 7 Z 35 2 Z 5 2 f(x) dx = 4 5 f(x) dx = 4 ZZ 53 1Z 9 1 f(x) dx = 3 f(x) dx dx = = 47 Z 3 f(x) dx 1 21 5 f(x) dx = 1 ZZ 53 Z Z3 9 Z2 5 f(x)dxdx= = f(x) 2dx1dx f(x) =1 Z 6 f(x) dx = 3 f(x) 22 # Question 2 5 1 f(x) dx = 7 ZZ 76 ZZ 6 Z1 5 5 f(x) = 73 and f(x) == 9dx dx = 2 f(x)dx dx 7 Z f(x) Given that f(x) dx = 6 1 2 11 1 f(x) dx Z 6 Z 72 ZZ 7 Z 5 6 f(x) dx f(x) dx = 9 Find f(x) dx 2f(x) dx = 2 f(x) dx = dx 13= 6 Z f(x) 3 Z 3 9 Z8 3 f(x) dx f(x) dx = 13 8 2 Z Z 9 5 2 2 f(x)dx dx==713 f(x) Z Z5 9 f(x) f(x)dx dx= 7 25 Z 3Z 9 f(x)f(x) dx = dx4 1 ZZ 3 5 5 f(x) dx = 1 f(x) dx = 3 2 Z 16 Z 5 f(x) dx = 7 f(x) dx = 2 1 and Z 2Z 6 f(x) dx 7 2 f(x) dx = 9 1 Z 7 f(x) dx 2 f(x) dx 2 D) 5 7 f(x) dx 14 2 14 14 14 14 14 14 14
© Copyright 2026 Paperzz