Worksheet-11 10/7/2014 Please work in groups and use the given time to think and try to do the problems. If you can not solve a question please ask me for a hint or just pass that question. 1. Use limit laws to evaluate the following limits. (a) lim (x2 + y) (x,y)→(1,2) Solution: (x2 + y) = lim (x,y)→(1,2) (b) lim x2 + (x,y)→(1,2) y = 12 + 2 = 3. lim (x,y)→(1,2) 2x2 (x,y)→(−2,1) 4x + y lim 2x2 Solution: lim = (x,y)→(−2,1) 4x + y 2x2 lim (x,y)→(−2,1) lim 4x + y = 8 −8 = −8 + 1 7 (x,y)→(−2,1) 2. Let f (x, y) = xy/(x2 + y 2 ). Show that f (x, y) approaches zero along the x-axes and the y-axes. Then prove that lim f (x, y) does not exist by showing that the limit along the (x,y)→(0,0) line y = x is nonzero. Solution: Along the x-axis we have: lim (x,y)→(0,0) xy 0 = lim = lim 0 = 0. x2 + y 2 (x,y)→(0,0) x2 (x,y)→(0,0) Along the y-axis we have: lim (x,y)→(0,0) x2 0 xy = lim = lim 0 = 0. 2 +y (x,y)→(0,0) y 2 (x,y)→(0,0) But Along the line y = x we have: lim (x,y)→(0,0) x2 x2 1 1 xy = lim = lim = , 2 2 +y 2 (x,y)→(0,0) 2x (x,y)→(0,0) 2 so the limit DNE. 3. Evaluate the following limit or determine why it doesn’t exist. (a) x2 − y 2 (x,y)→(0,0) x2 + y 2 Solution: Along the x-axis we have: lim x2 − y 2 x2 = lim = lim 1 = 1. (x,y)→(0,0) x2 + y 2 (x,y)→(0,0) x2 (x,y)→(0,0) lim Along the y-axis we have: x2 − y 2 −y 2 = lim = lim −1 = −1. (x,y)→(0,0) x2 + y 2 (x,y)→(0,0) y 2 (x,y)→(0,0) lim So the limit DNE. 1 (b) xy 4 (x,y)→(0,0) x2 + y 2 Solution: We notice that the limit is 0 along the x-axis, y-axis and y = x. So we look for an algebraic approach. We convert to polar coordinates and get: lim xy 4 r cos θ(r sin θ)4 r5 cos θ sin4 θ = lim = lim = lim r3 cos θ sin4 θ = 0, r→0 r→0 r→0 r2 r2 (x,y)→(0,0) x2 + y 2 lim since sin4 θ and cos θ are both bounded functions. xy p (c) lim (x,y)→(0,0) x2 + y 2 Solution: We notice that the limit is 0 along the x-axis, y-axis and y = x. So we look for an algebraic approach. We convert to polar coordinates and get: r2 cos θ sin θ xy r cos θr sin θ p = lim = lim r cos θ sin θ = 0, = lim r→0 r→0 r r (x,y)→(0,0) x2 + y 2 r→0 lim since sin θ and cos θ are both bounded functions. 1 (d) lim tan(x2 + y 2 ) arctan( 2 ) x + y 2 (x,y)→(0,0) Solution: Since −π 2 ≤ arctan 1 x2 +y 2 ≤ π 2, we will use the squeeze theorem on this 1 tan(x2 + y 2 ) ≤ tan(x2 + y 2 ) arctan x2 +y ≤ π2 tan(x2 + y 2 ). 2 limit. We notice that −π 2 Also: −π −π −π lim tan(x2 + y 2 ) = tan(02 + 02 ) = tan(0) = 0 and 2 2 (x,y)→(0,0) 2 π π π lim tan(x2 + y 2 ) = tan(02 + 02 ) = tan(0) = 0, so by the squeeze theorem we 2 (x,y)→(0,0) 2 2 1 =0 have lim tan(x2 + y 2 ) arctan x2 + y 2 (x,y)→(0,0) (e) lim (x,y)→(0,0) x2 + y 2 p x2 + y 2 + 1 − 1 Solution: p p 2 + y2) 2 + y2 + 1 + 1 (x x 2 2 x +y +1+1 + p lim ·p = lim 2 2 x2 + y 2 + 1 − 1 (x,y)→(0,0) x +y +1−1 x2 + y 2 + 1 + 1 (x,y)→(0,0) p x2 + y 2 + 1 + 1 (x2 + y 2 ) = lim x2 + y 2 (x,y)→(0,0) p = lim x2 + y 2 + 1 + 1 (x,y)→(0,0) p = 02 + 0 2 + 1 + 1 x2 y2 =2 4. Compute the following partial derivatives: (a) ∂ ∂y (sin (x) sin (y)) ∂ Solution: ∂y (sin (x) sin (y)) = sin(x) cos(y) 2 (b) ∂ xy ∂y x−y Solution: (x − y)(x) − (xy)(−1) x2 − xy + xy x2 ∂ xy = = = 2 2 ∂y x − y (x − y) (x − y) (x − y)2 (c) ∂ 2 xy ∂x∂y x−y Solution: ∂2 xy ∂ xy ∂ x2 ∂ = = ∂x∂y x − y ∂x ∂y x − y ∂x (x − y)2 2 2 (x − y) (2x) − x (2(x − y))(1) (x2 − 2xy + y 2 )2x − (2x3 − 2x2 y) = = (x − y)4 (x − y)4 2x3 − 4x2 y + 2xy 2 + 2xy 2 − 2x3 + 2x2 y 4xy 2 − 2x2 y = = (x − y)4 (x − y)4 (d) √ ∂ u2 +v 2 . e ∂u Solution: √ ∂ √u2 +v2 2 2 e = e u +v ∂u √ 2 2 1 2 ue u +v 2 −1/2 (u + v ) (2u) = √ 2 u2 + v 2 5. Verify Clairaut’s Theorem for the function z = x4 cos xy. In other words, show that zxy = zyx . Solution: First we find zxy . zxy = (zx )y = x4 − sin(xy)y + 4x3 cos(xy) y = 4x3 cos(xy) − x4 y sin(xy) y = 4x3 − sin(xy)x − x4 sin(xy) − x4 y cos(xy)x = −4x4 sin(xy) − x4 sin(xy) − x5 y cos(xy) = −5x4 sin(xy) − x5 y cos(xy) Next we find zyx . zyx = (zy )x = (x4 − sin(xy)x)x = (−x5 sin(xy))x = −5x4 sin(xy) − x5 cos(xy)y = −5x4 sin(xy) − x5 y cos(xy) So we see that in both cases we get the same final result. 3
© Copyright 2026 Paperzz