7. ∫xe-xdx Let u = x and dv = e-xdx. Then du = dx and v = -e-x. ∫xe-xdx = x(-e-x) - ∫(-e-x)dx = -xe-x + ∫e-xdx = -xe-x - e-x + C 1 x2 1 e 2xdx = ∫eudu ∫ 2 2 2 2 2 1 1 Let u = x , = eu + C = ex + C 2 2 then du = 2x dx. 2 9. ∫xex dx = 11. 1 !0 (x ∫ex 22 xdx = - 3)exdx Let u = (x - 3) and dv = exdx. Then du = dx and v = ex. ∫(x - 3)exdx = (x - 3)ex - ∫exdx = (x - 3)ex - ex + C = xex - 4ex + C. Thus, 13. 3 !1 ln 1 !0 (x 1 - 3)exdx = (xex - 4ex) 0 = (e - 4e) - (-4) = -3e + 4 ≈ -4.1548. 2xdx dx and v = x. x dx ∫ln 2xdx = (ln 2x)(x) - ∫x · x = x ln 2x - x + C Let u = ln 2x and dv = dx. Thus, 15. 17. 436 3 !1 ln Then du = 3 2xdx = (x ln 2x - x) 1 = (3 ln 6 - 3) - (ln 2 - 1) ≈ 2.6821. 2x 1 dx = ∫ du = ln|u| + C = ln(x2 + 1) + C + 1 u Substitution: u = x2 + 1 du = 2xdx [Note: Absolute value not needed, since x2 + 1 ≥ 0.] ∫ x2 u2 (ln x)2 ln x dx = udu = + C = + C ∫ x ∫ 2 2 Substitution: u = ln x 1 du = dx x CHAPTER 7 ADDITIONAL INTEGRATION TOPICS 19. ∫ x ln xdx = ∫x1/2ln xdx dx 2 3/2 and v = x . x 3 dx 2 2 2 2 ! ∫x1/2ln xdx = 3 x3/2 ln x - ∫ 3 x3/2 x = 3 x3/2 ln x - 3 ∫x1/2dx 4 2 = x3/2 ln x - x3/2 + C 9 3 6 21. ∫(x – 1) (x + 3)dx Let u = ln x and dv = x1/2dx. Then du = Let u = x + 3 and dv = (x – 1)6!. Then du = dx and v = (x " 1)7 7 (x " 1)7 (x " 1)7 - ∫ dx 7 7 (x + 3)(x " 1)7 (x " 1)8 ! = + C 7 56 ! ! 23. ∫(x + 1)2(x – 1)2dx = ∫(x2 - 1)2dx = ∫(x4 – 2x2 + 1)dx ∫(x – 1)6(x + 3)dx = (x + 3) ! ! = 2 1 5 x - x3 + x + C 3 5 25. Since f! (x) = (x - 3)e x < 0 on [0, 1], the integral represents the negative of the area between the graph of f and the x-axis from x = 0 to x = 1. A 27. y = ln 2x A The integral represents the area between the curve y = ln 2x and the x-axis from x = 1 to x = 3. 29. ∫x2exdx Let u = x2 and dv = exdx. Then du = 2x dx and v = ex. ∫x2exdx = x2ex - ∫ex(2x)dx = x2ex - 2∫xexdx ∫xexdx can be computed by using integration-by-parts again. EXERCISE 7-3 437 Let u = x and dv = exdx. Then du = dx and v = ex. ∫xexdx = xex - ∫exdx = xex - ex + C and ∫x2exdx = x2ex - 2(xex - ex) + C = x2ex - 2xex + 2ex + C = (x2 - 2x + 2)ex + C 31. ∫xeaxdx Let u = x and dv = eaxdx. ∫xeaxdx = x · 33. e ln x x2 !1 eax a Then du = dx and v = eax eax xe ax dx = + C ∫ a a2 a eax . a dx dx !1 and v = . x x ln x dx 1 dx ln x ln x 1 " 1 ∫ x 2 dx = (ln x) # ! x $% - ∫- x · x = - x + ∫ x 2 = - x - x + C e ln x 1 ln e 1 1 " ln x " ln 1 Thus, ! dx = # ! ! $% e = ! ! #! ! $% 2 1 x x x 1 e e 1 1 2 = + 1 ≈ 0.2642. e [Note: ln e = 1.] Let u = ln x and dv = 35. 2 !0 ln(x dx . x2 Then du = + 4)dx Let t = x + 4. Then dt = dx and ∫ln(x + 4)dx = ∫ln t dt. Now, let u = ln t and dv = dt. Then du = dt and v = t. t !1 t dt = t ln t - ∫t " #$ dt = t ln t - ∫dt = t ln t - t + C t Thus, ∫ln(x + 4)dx = (x + 4) ln(x + 4) - (x + 4) + C ∫ln and 2 !0 ln(x 2 + 4)dx = [(x + 4) ln(x + 4) - (x + 4)] 0 = 6 ln 6 - 6 - (4 ln 4 - 4) = 6 ln 6 - 4 ln 4 – 2 ≈ 3.205. 37. ∫xex-2dx Let u = x and dv = ex-2dx. Then du = dx and v = ex-2. ∫xex-2dx = xex-2 - ∫ex-2 dx = xex-2 - ex-2 + C 438 CHAPTER 7 ADDITIONAL INTEGRATION TOPICS 39. ∫x ln(1 + x2)dx Let t = 1 + x2. Then dt = 2x dx and dt 1 = ∫ln t dt. 2 2 dt Now, for ∫ln t dt, let u = ln t, dv = dt. Then du = and v = t. t 1 !1 ln t dt = t ln t - ∫t " #$ dt = t ln t - ∫dt = t ln t - t + C ∫ t 2 Therefore, 1 1 ∫x ln(1 + x2)dx = 2 (1 + x2)ln(1 + x2) - 2 (1 + x2) + C. ∫x ln(1 + x2)dx = ∫ln(1 + x2)x dx = ∫ln t 41. ∫ex ln(1 + ex)dx Let t = 1 + ex. Then dt = exdx and ∫ex ln(1 + ex)dx = ∫ln t dt. Now, as shown in Problems 31 and 35, ∫ln t dt = t ln t - t + C. Thus, ∫ex ln(1 + ex)dx = (1 + ex)ln(1 + ex) - (1 + ex) + C. 43. ∫(ln x)2dx Let u = (ln x)2 and dv = dx. ∫(ln x)2dx = ∫ln x dx can Then du = 2 ln x dx and v = x. x 2 ln x dx = x(ln x)2 - 2∫ln x dx x be computed by using integration-by-parts again. x(ln x)2 - ∫x · As shown in Problems 31 and 35, ∫ln x dx = x ln x - x + C. Thus, ∫(ln x)2dx = x(ln x)2 - 2(x ln x - x) + C = x(ln x)2 - 2x ln x + 2x + C. 45. ∫(ln x3)dx 1 dx and v = x. x 1 ∫(ln x3)dx = x(ln x)3 - ∫x · 3(ln x)2 · x dx = x(ln x)3 - 3∫(ln x3)dx Now, using Problem 39, ∫(ln x2)dx = x(ln x)2 - 2x ln x + 2x + C. Let u = (ln x)3 and dv = dx. Therefore, ∫(ln Then du = 3(ln x)2 . x3)dx = x(ln x)3 - 3[x(ln x)2 - 2x ln x + 2x] + C = x(ln x)3 - 3x(ln x)2 + 6x ln x - 6x + C. EXERCISE 7-3 439 47. e "1 ln(x2)dx = e e "1 2 ln x dx = 2 "1 ln x dx By Example 4, ∫ln x dx = x ln x – x + C. Therefore e 2 "1 ln x dx = 2(x ln x – x) e = 2[e ln e – e] – 2[ln 1 – 1] = 2 1 ! ! ! 49. ! 1 "0 ln(ex 2 )dx = 1 "0 x2 dx = 1 3 1 1 x = 0 3 3 2 ! (Note: ln(ex ) = x2 ln e = x2.) ! ! ! ! 2 ! 0 4 51. y = x - 2 - ln x, 1 ≤ x ≤ 4 y = 0 at x ≈ 3.146 -2 A = 3.146 4 = [-(x - 2 - ln x)]dx + ! !1 3.146 3.146 4 (ln x + 2 - x)dx + ! (x !1 3.146 (x - 2 - ln x)dx - 2 - ln x)dx ∫ln x dx is found using integration-by-parts. Let u = ln x and 1 dv = dx. Then du = dx and v = x. x !1 ∫ln x dx = x ln x - ∫x " x #$ dx = x ln x - ∫dx = x ln x - x + C Thus, 1 " "1 A = # x ln x ! x + 2x ! x 2$% 3.146 + # x 2 ! 2x ! x ln x + x $% 4 1 3.146 2 2 1 2$ 3.146 " "1 2 = # x ln x + x ! x + # x ! x ! x ln x $% 4 3.146 2 % 1 2 ≈ (1.803 - 0.5) + (-1.545 + 1.803) = 1.561 Now, 10 53. y = 5 - xe x , 0 ≤ x ≤ 3 y = 0 at x ≈ 1.327 A = 1.327 (5 - xex )dx + 3 0 3 [-(5 - xex )]dx !0 !1.327 1.327 3 = ! (5 - xex )dx + ! (xex - 5)dx 0 1.327 Now, ∫xex dx is found using integration-by-parts. -50 Let u = x and dv = e x dx. Then, du = dx and v = e x . ∫xex dx = xe x - ∫e x dx = xe x - e x + C Thus, A = (5x - [xe x - e x ]) 1.327 + (xe x - e x - 5x) 3 0 ≈ (5.402 - 1) + (25.171 - [-5.402]) ≈ 34.98 440 CHAPTER 7 ADDITIONAL INTEGRATION TOPICS 1.327 55. Marginal profit: P'(t) = 2t - te-t. The total profit over the first 5 years is given by the definite integral: 5 !0 (2t - te-t)dt = 5 !0 2tdt - 5 -tdt !0 te We calculate the second integral using integration-by-parts. Let u = t and dv = e-t dt. Then du = dt and v = -e-t ∫te-tdt = -te-t - ∫-e-tdt = -te-t - e-t + C = -e-t [t + 1] + C Thus, 5 5 Total profit = t 2 0 + (e-t [t + 1]) 0 ≈ 25 + (0.040 - 1) = 24.040 To the nearest million, the total profit is $24 million. P'(t) 57. P'(t) = 2t - te - t 10 The total profit for the first five years (in millions of dollars) is the same as the area under the marginal profit function, P'(t) = 2t - te-t, from t = 0 to t = 5. 5 Total Profit 0 5 t T 59. From Section 7-2, Future Value = erT ! f(t)e-rtdt. 0 T = 5, f(t) = 1000 - 200t. Now r = 0.08, Thus, 5 FV = e(0.08)5 ! (1000 - 200t)e-0.08tdt = 0 0.4 5 -0.08t 1000e e dt 0 ! 5 - 200e0.4 ! te-0.08tdt. 0 We calculate the second integral using integration-by-parts. e!0.08t . !0.08 te !0.08t e!0.08t e!0.08t -0.08t -0.08t te dt = dt = -12.5 te + C ∫ ∫ !0.08 !0.08 0.0064 = -12.5te-0.08t - 156.25e-0.08t + C Thus, we have: Let u = t, dv = e-0.08tdt. Then du = dt and v = e!0.08t 5 - 200e0.4[-12.5te-0.08t - 156.25e-0.08t] 5 0 !0.08 0 0.4 0.4 -0.4 -0.4 = -12,500 + 12,500e - 200e [-62.5e - 156.25e + 156.25] 0.4 0.4 = -12,500 + 12,500e + 43,750 - 31,250e 0.4 = 31,250 - 18,750e ≈ 3,278 or $3,278 FV = 1000e0.4 EXERCISE 7-3 441 1 61. Gini Index = 2 ! (x - xex-1)dx 0 1 1 0 0 = 2 ! xdx - 2 ! xex-1dx We calculate the second integral using integration-by-parts. Let u = x, dv = ex-1dx. Then du = dx, v = ex-1. ∫xex-1dx = xex-1 - ∫ex-1dx = xex-1 - ex-1 + C 1 1 Therefore, 2 ! xdx - 2 ! xex-1dx = x2 1 - 2[xex-1 - ex-1] 1 0 0 0 0 -1 y 63. 1 y=x y = xe(x-1) 0.5 0 0.5 1 x = 1 - 2[1 - 1 + (e )] = 1 - 2e-1 ≈ 0.264. The area bounded by y = x and the Lorenz curve y = xe(x-1) divided by the area under the curve y = x from x = 0 to x = 1 is the index of income concentration, in this case 0.264. It is a measure of the concentration of income—the closer to zero, the closer to all the income being equally distributed; the closer to one, the closer to all the income being concentrated in a few hands. 65. S'(t) = -4te0.1t, S(0) = 2,000 S(t) = ∫-4te0.1t dt = -4∫te0.1t dt e0.1t = 10e0.1t 0.1 ∫te0.1t dt = 10te0.1t - ∫10e0.1t dt = 10te0.1t - 100e0.1t + C Let u = t and dv = e0.1t dt. Then du = dt and v = 2000 S(t) = -40te0.1t + 400e0.1t + C Now, Since S(0) = 2,000, we have 2,000 = 400 + C, C = 1,600 0 30 Thus, S(t) = 1,600 + 400e0.1t - 40te0.1t 0 To find how long the company will continue to manufacture this computer, solve S(t) = 800 for t. The company will manufacture the computer for 15 months. 67. p = D(x) = 9 - ln(x 9 - ln( x + 4) ln( x + 4) x + 4 x Now, CS = 1,000 !0 + = = = ≈ 4); p = $2.089. To find x , solve 2.089 6.911 e6.911 (take the exponential of both sides) 1,000 (D(x) - p )dx = = 442 CHAPTER 7 1,000 !0 1,000 !0 [9 - ln(x + 4) - 2.089]dx 6.911dx - ADDITIONAL INTEGRATION TOPICS 1,000 !0 ln(x + 4)dx To calculate the second integral, we first let z = x + 4 and dz = dx to get ∫ln(x + 4)dx = ∫ln zdz Then we use integration-by-parts. Let u = ln z and dv = dz. 1 Then du = dz and v = z. z 1 ∫ln zdz = z ln z - ∫z · z dz = z ln z - z + C Therefore, ∫ln(x + 4)dx = (x + 4)ln(x + 4) - (x + 4) + C and CS = 6.911x 1,000 - [(x + 4)ln(x + 4) - (x + 4)] 1,000 0 0 ≈ 6911 - (5935.39 - 1.55) ≈ $977 69. The area bounded by ! the price-demand equation, p = 9 - ln(x + 4), and the price equation, y = p = 2.089, from x = 0 to x = x = 1,000, represents the consumers' surplus. This is the amount saved by consumers who are willing to pay more than $2.089. ! p = D(x) p = 2.089 CS x = 1000 71. Average concentration: = 5 20 ln(t + 1) 5 ln(t + 1) 1 dt = 4 ! 2 ! 0 (t + 1)2 5 ! 0 0 (t + 1) ln(t + 1) dt is found using integration-by-parts. + 1)2 ∫ (t Let u = ln(t + 1) and dv = (t + 1)-2dt. 1 Then du = dt = (t + 1)-1dt and v = -(t + 1)-1. t + 1 ln(t + 1) ln(t + 1) dt = 2 + 1) t + 1 ln(t + 1) = + t + 1 ∫ (t ∫ - (t + 1)-1(t + 1)-1dt ∫(t + 1)-2dt = - 1 ln(t + 1) - t + 1 t + 1 + C Therefore, the average concentration is: 1 5 ln(t + 1) 1 5 20 ln(t + 1) dt = 4 t + 1 t + 1 0 5 !0 (t + 1)2 1 " ln 6 = 4# ! ! $% - 4(-ln 1 - 1) 6 6 = 4 - 1 2 2 ln 6 = (10 - 2 ln 6) ≈ 2.1388 ppm 3 3 3 EXERCISE 7-3 443 73. N'(t) = (t + 6)e-0.25t, 0 ≤ t ≤ 15; N(0) = 40 N(t) - N(0) = N(t) = 40 + t t !0 N'(x)dx; !0 (x t + 6)e-0.25xdx = 40 + 6 ! e-0.25xdx + 0 t = 40 + 6(-4e-0.25x) 0 = 64 - 24e-0.25t + t + t !0 xe -0.25x !0 xe -0.25x t !0 xe -0.25x dx dx dx Let u = x and dv = e-0.25xdx. Then du = dx and v = -4e-0.25x; ∫xe-0.25xdx = -4xe-0.25x - ∫ -4e-0.25xdx = -4xe-0.25x - 16e-0.25x + C Now, t !0 xe -0.25x t dx = (-4xe-0.25x - 16e-0.25x) 0 = -4te-0.25t - 16e-0.25t + 16 and N(t) = 80 - 40e-0.25t - 4te-0.25t To find how long it will take a student to achieve the 70 words per minute level, solve N(t) = 70: 100 0 15 It will take 8 weeks. By the end of the course, a student should be 0 able to type N(15) = 80 - 40e-0.25(15) - 60e-0.25(15) ≈ 78 words per minute. 1 5 (20 + 4t - 5te-0.1t)dt 5 !0 5 1 5 = (20 + 4 t ) dt te-0.1tdt ! ! 0 0 5 -0.1t dt is found using integration-by-parts. ∫te 75. Average number of voters = e!0.1t = -10e-0.1t. !0.1 ∫te-0.1tdt = -10te-0.1t - ∫-10e-0.1tdt = -10te-0.1t + 10∫e-0.1tdt Let u = t and dv = e-0.1tdt. Then du = dt and v = 10e !0.1t = -10te + + C = -10te-0.1t - 100e-0.1t + C !0.1 Therefore, the average number of voters is: 5 1 5 (20 + 4t)dt - ! te-0.1tdt ! 0 5 0 5 5 1 = 5 (20t + 2t2) 0 - (-10te-0.1t - 100e-0.1t) 0 -0.1t 1 = 5 (100 + 50) = 30 + (50e-0.5 + 100e-0.5) - 100 = 150e-0.5 - 70 ≈ 20.98 (thousands) or 20,980 444 CHAPTER 7 5 + (10te-0.1t + 100e-0.1t) 0 ADDITIONAL INTEGRATION TOPICS EXERCISE 7-4 1. Use Formula 9 with a = b = 1. x x 1 1 ∫ x(1 + x)dx = 1 ln 1 + x + C = ln x + 1 + C 3. Use Formula 18 with a = 3, b = 1, c = 5, d = 2: 1 2 5 + 2x 1 1 ∫(3 + x)2(5 + 2x)dx = 3 ! 2 " 5 ! 1 · 3 + x + (3 ! 2 " 5 ! 1)2 ln 3 + x 5 + 2x 1 = + 2 ln + C 3 + x 3+ x + C 5. Use Formula 25 with a = 16 and b = 1: 2(x " 2 # 16) x 2(x " 32) 16 + x + C = dx = 16 + x + C 2 3 16 + x 3#1 ∫ 7. Use Formula 29 with a = 1: ! ∫ 1 ! x 1 " x2 dx = - 1 1+ ln 1 = -ln ! 1+ 1 " x2 x 1 " x2 x ! + C + C ! 9. Use Formula 37 with a = 2 (a2 = 4): ! 1 dx = ln ∫ 2 2 x x + 4 2 + 1 x x2 + 4 + C 11. Use Formula 51 with n = 2: ! 2 ∫x 2+ 1 x 2 +1 x3 x3 ! x ln x dx = ln x + C = ln x + C (2 + 1)2 2+ 1 3 9 13. First let u = ex. Then du = exdx and dx = 1 1 dx = ∫ du x + e u(1 + u) Now use Formula 9 with a = b = 1: u 1 1 ∫ u(1 + u)du = 1 ln 1 + u + C ex = ln + C 1 + ex Thus, 1 1 du = du . x e u ∫1 = ln| e x | - ln|1 + ex| + C = x - ln|1 + ex| + C EXERCISE 7-4 445
© Copyright 2025 Paperzz