1) QUIZ #6 - SOLUTIONS Use the Divergence Theorem to calculate the surface integral F F ⋅ d S , w here ( x, y, z ) = x 4iˆ − x 3z 2 ĵ + 4xy2 z k̂ , and S is the ∫∫ S surface of the solid bounded by the cylinder x 2 + y 2 = 1 and the planes z = x + 2 and z = 0. ∇ ⋅ F = 4x 3 + 4xy 2 2 π 1 r cosθ +2 2 2 3 ∫∫ F ⋅ dS = ∫∫∫ 4x x + y dV = ∫ ∫ ∫ 4r cosθ r dz dr dθ = ( S ) E 2π 1 ∫ ∫ ( 4r 5 ( 0 0 ) 0 ) cos 2 θ + 8r 4 cosθ dr dθ = 0 0 2π ∫ 0 2) Use the Divergence Theorem to verify the identity 1 Vol ( E ) = ∫∫ F ⋅ dS , where F ( x, y, z ) = xiˆ + yĵ + zk̂ . 3 S 1 1 1 F ⋅ d S = div F dV = ∫∫∫ 3dV = ∫∫ ∫∫∫ 3 S 3 E 3 E ∫∫∫ dV = Vol ( E ) E 2 8 2 cos 2 θ + cosθ dθ = π 3 5 3
© Copyright 2026 Paperzz