The Quadratic Formula

Example 3:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
-1 = 3n2 – 5n
The Quadratic
Formula
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
𝒙=
πŸπ’‚
What is the Quadratic Formula?
The Quadratic Formula is
______________________________________
__________________________________.
Remember! The equation MUST be written in standard form:
Example 1:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
2x2 + 7x – 9 = 0
ax2 + bx + c = 0
Example 4:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
5w2 + 4 = w + 6
Example 2:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
4m2 = 7m + 2
Examples 3 & 4
Examples 1 & 2
Example 3:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
-1 = 3n2 – 5n
+1
+1
0 = 3n2 – 5n + 1
a = 3 b = -5 c = 1
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
πŸπ’‚
πŸ“ ± (βˆ’πŸ“)𝟐 βˆ’ πŸ’(πŸ‘)(𝟏)
𝒙=
𝟐(πŸ‘)
πŸ“ ± πŸπŸ“ βˆ’ 𝟏𝟐
𝒙=
πŸ”
πŸ“ ± πŸπŸ‘
𝒙=
πŸ”
πŸ“ ± πŸ‘. πŸ”πŸŽπŸ”
𝒙=
πŸ”
𝒙=
The Quadratic
Formula
π‘₯=
5+3.606
π‘₯=
5βˆ’3.606
6
6
= 1.43
= 0.23
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
𝒙=
πŸπ’‚
What is the Quadratic Formula?
The Quadratic Formula is
another method for solving a quadratic equation.
______________________________________
(other methods: factoring, graphing, finding square roots)
__________________________________.
Remember! The equation MUST be written in standard form:
ax2 + bx + c = 0
Example 4:
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
5w2 + 4 = w + 6
-w -6
-w
–w–2=0
Use the quadratic formula to solve the
equation. Round to the nearest hundredth, if necessary.
2x2 + 7x – 9 = 0
a = 2 b = 7 c = -9
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
πŸπ’‚
βˆ’πŸ• ± (πŸ•)𝟐 βˆ’ πŸ’(𝟐)(βˆ’πŸ—)
𝒙=
𝟐(𝟐)
βˆ’πŸ• ± πŸ’πŸ— + πŸ•πŸ
𝒙=
πŸ’
βˆ’πŸ• ± 𝟏𝟐𝟏
𝒙=
πŸ’
βˆ’πŸ• ± 𝟏𝟏
𝒙=
πŸ’
𝒙=
Example 2:
-6
𝒙=
βˆ’πŸ•+𝟏𝟏
𝒙=
βˆ’πŸ•βˆ’πŸπŸ
πŸ’
πŸ’
=1
=
βˆ’πŸπŸ–
πŸ’
Use the quadratic formula to solve the
4m2 = 7m + 2
-7m -2
-7m
-2
4m2 – 7m – 2 = 0
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
πŸπ’‚
πŸ• ± (βˆ’πŸ•)𝟐 βˆ’ πŸ’(πŸ’)(βˆ’πŸ)
𝒙=
𝟐(πŸ’)
πŸ• ± πŸ’πŸ— + πŸ‘πŸ
𝒙=
πŸ–
πŸ• ± πŸ–πŸ
𝒙=
πŸ–
πŸ• ±πŸ—
𝒙=
πŸ–
𝒙=
π‘₯=
1+6.403
π‘₯=
1βˆ’6.403
10
10
Examples 3 & 4
= -4.5
equation. Round to the nearest hundredth, if necessary.
5w2
βˆ’π’ƒ ± π’ƒπŸ βˆ’ πŸ’π’‚π’„
𝒙=
πŸπ’‚
𝟏 ± (βˆ’πŸ)𝟐 βˆ’ πŸ’(πŸ“)(βˆ’πŸ)
𝒙=
𝟐(πŸ“)
𝟏 ± 𝟏 + πŸ’πŸŽ)
𝒙=
𝟏𝟎
𝟏 ± πŸ’πŸ
𝒙=
𝟏𝟎
𝟏 ± πŸ”. πŸ’πŸŽπŸ‘
𝒙=
𝟏𝟎
Example 1:
= 0.74
= -0.54
π‘₯=
7+9
π‘₯=
7βˆ’9
8
8
=2
= -0.25
Examples 1 & 2
© Lisa Davenport 2013
Directions:
Step 1: Print pages 1 & 2 front to back so that the text is facing in opposite directions.
Step 2: Cut the paper in half (along the dotted line)
Step 3: Place the half that says β€œExamples 3 &4” face up on the desk. Take the other sheet and line up the side
that says β€œExamples 1 & 2” face up just above the other sheet.
Step 4: Fold over the top half of both sheets. Secure with a few staples.
The final product should look like this:
1&2
3&4