Name: Math 151, A Review for the First Exam. 1. Compute the following: Z 2x Z x3 √ i dh e √ 2 d (a) 4t + 2 dt and (b) t3 − t dt. dx 0 dx x2 Z 1 2+h √ 2. Find lim 1 + t3 dt. h→0 h 2 3. Evaluate each of the following integrals. Z Z 1 1 5 3 √ + dx, (a) (6x + 20x + 20x + 49) dx, (b) 2 4 + x2 4 − x Z Z 2 Z eπ x x x5 + 1 sin(ln x) dx √ + (c) dx, (d) dx, (e) , 2 6 2 4 + x x + 6x + 1 x 4 − x 0 1 Z Z Z Z 1 −x4 −2x 2 xe dx, (h) xe dx, (i) (3x2 + 1) cos(3x) dx, (f) tan x dx, (g) −1 Z Z Z (10x + 15) dx (x3 − x + 1) dx 3 dx (j) , (k) , (l) 2 4 3 4 2x + 7x + 3 x −x x + 5x2 + 4 Z 7√ 49 − x2 dx by interpreting it as an area. 4. Find the value of 0 5. Find the total (area) between y = x3 − x and the x-axis for x ∈ [0, 4]. Rb 6. Find the interval [a, b] for which the value of a (2 + x − x2 ) dx is a maximum. Hint: Graph the integrand! 7. Given the region between the two curves y = cos x and y = 1 for x ∈ [0, π2 ], set up, but do not integrate, the following integrals for: (a) The volume obtained from rotating this region about the x-axis. (b) The volume obtained from rotating this region about the line y = −1. (c) The volume obtained from rotating this region about the y-axis. (d) The volume obtained from rotating this region about the line x = 2. 8. Compute the lengths of the curves: x3 1 + for x ∈ [1, 2]. 6 2x Z e2x √ (b) y = 4t2 + 2 dt for x ∈ [0, 2]. (a) y = 0 9. If f is a continuous function, show that Ra 0 f (x) dx = Ra 0 f (a − x) dx. Solutions. √ √ √ 1. (a) 2e2x 4e4x + 2, (b) 3x2 x9 − x3 − 2x x6 − x2 2. 3 3. (a) 6x6 + 5x4 + 10x2 + 49x + C (b) arcsin( x2 ) + 12 arctan( x2 ) + C √ (c) − 4 − x2 + 12 ln(4 + x2 ) + C (d) 16 ln 77 (e) 2 (f) tan x − x + C (g) 0 (h) − x2 e−2x − 14 e−2x + C (i) 31 (3x2 + 1) sin(3x) + 23 x cos(3x) − 29 sin(3x) + C (j) 3 ln |x + 3| + 2 ln |2x + 1| + C (k) 2x12 + ln |x − 1| + C (l) arctan x − 12 arctan( x2 ) + C 4. Quarter circle area: 49 π 4 R1 R4 5. 0 −(x3 − x) dx + 1 (x3 − x) dx = 113 2 6. [−1, 2], the biggest interval giving positive area. Rπ 7. (a) Washers: 02 π(1 − cos2 x) dx Rπ (b) Washers: 02 π[(1 − (−1))2 − (cos x − (−1))2 ] dx Rπ (c) Cylindrical Shells: 02 2πx(1 − cos x) dx Rπ (d) Cylindrical Shells: 02 2π(2 − x)(1 − cos x) dx 8. (a) 17 12 8 (b) e + 1 9. RLet w = a − x andR dw = −dx. So, R Ra a a 0 f (a − x) dx = f (w) · (−dw) = f (w) dw = f (x) dx. 0 a 0 0
© Copyright 2026 Paperzz