Section 5.4: Properties of rational functions #1

Section 5.4: Properties of rational functions
#1-16:
a) find the domain, express your answer using words
b) find the equation of the vertical asymptote (if any)
1) 𝑓(π‘₯) =
2π‘₯βˆ’6
π‘₯+3
1a) domain:
x+3=0
x = -3
Answer: domain all real numbers except (-3)
1b) answer: vertical asymptote equation x = -3
3π‘₯+12
3) 𝑓(π‘₯) = π‘₯ 2 βˆ’3π‘₯βˆ’4
x2 – 3x – 4 = 0
(x+1)(x-4) = 0
x+1=0
x–4=0
x = -1
x=4
Answer: domain all real numbers except -1 and 4
3b) answer: vertical asymptote x = -1 and x = 4
5) 𝑓(π‘₯) =
3π‘₯ 2 βˆ’10π‘₯βˆ’8
π‘₯ 2 βˆ’4
x2 – 4 = 0
(x+2)(x-2)=0
x+2=0
x = -2
x-2=0
x=2
Answer: domain all real numbers except 2, -2
5b) answer: vertical asymptote x = 2 and x = -2
7) 𝑓(π‘₯) =
π‘₯ 2 βˆ’16
π‘₯ 3 βˆ’π‘₯ 2
x3 – x2 = 0
x2(x-1) = 0
x2 = 0
x–1=0
π‘₯ = ±βˆš0
x=0
x=1
Answer: domain all real numbers except 0 and 1
7b) answer: vertical asymptote x = 0 and x = 1
9) 𝑓(π‘₯) =
3
π‘₯βˆ’6
x- 6 = 0
x=6
Answer: domain all real numbers except 6
9b) answer: vertical asymptote x = 6
11) 𝑓(π‘₯) =
2π‘₯
π‘₯ 2 βˆ’9
x2 – 9 = 0
(x+3)(x-3) = 0
x+3 = 0
x = -3
x–3=0
x=3
Answer: domain all real numbers except 3 and -3
11b) answer: vertical asymptote x = 3 and x = -3
13) 𝑓(π‘₯) =
π‘₯+2
π‘₯ 2 +16
x2 + 16 = 0 (this is prime so I will solve using square roots)
x2 = -16
π‘₯ = ±βˆšβˆ’16
x = ±4𝑖 (since all answers have i there aren’t any numbers to exclude from the domain)
Answer: domain all real numbers
13b) answer: vertical asymptote none
5π‘₯
15) 𝑓(π‘₯) = π‘₯ 2 +9
x2 + 9 = 0 (this is prime so I will solve using square roots)
x2 = -9
π‘₯ = ±βˆšβˆ’9
x = ±3𝑖 (since all answers have i there aren’t any numbers to exclude from the domain)
Answer: domain all real numbers
15b) answer: vertical asymptote none
#1 7– 32
a) find the x-intercept
b) find the y-intercept
17) 𝑓(π‘₯) =
2π‘₯βˆ’6
π‘₯+3
x-intercept
2x – 6 = 0
2x = 6
x=3
y-intercept
𝑓(0) =
2βˆ—0βˆ’6
0+3
=
βˆ’6
3
= βˆ’2
Answer: x-intercept (3,0)
y-intercept (0,-2)
19) 𝑓(π‘₯) =
3π‘₯+12
π‘₯ 2 βˆ’3π‘₯βˆ’4
x-intercept
3x + 12 = 0
3x = -12
x = -4
y-intercept
3βˆ—0+12
12
𝑓(0) = 02 βˆ’3βˆ—0βˆ’4 = βˆ’4 = βˆ’3
Answer: x-intercept (-4,0)
21) 𝑓(π‘₯) =
y-intercept (0,-3)
3π‘₯ 2 βˆ’10π‘₯βˆ’8
π‘₯ 2 βˆ’4
x-intercept
3x2 – 10x – 8 = 0
(3x+2)(x-4) = 0
3x+2 = 0
x-4=0
x = -2/3
x=4
y-intercept
𝑓(0) =
3βˆ—02 βˆ’10βˆ—0βˆ’8
02 βˆ’4
βˆ’8
= βˆ’4 = 2
Answer: x-intercept (-2/3,0)
23) 𝑓(π‘₯) =
(4,0)
y-intercept (0,2)
π‘₯ 2 βˆ’16
π‘₯ 3 βˆ’π‘₯ 2
x-intercept
x2 – 16 = 0
(x+4)(x-4) = 0
x+4=0
x–4=0
x = -4
x=4
y-intercept
02 βˆ’16
𝑓(0) = 03 βˆ’02 =
βˆ’16
0
= 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
Answer: x-intercept (-4,0)
(4,0)
y-intercept none
25) 𝑓(π‘₯) =
3
π‘₯βˆ’6
x-intercept
3 = 0 (no x so there is no solution and no x-intercept
y-intercept
3
3
𝑓(0) = 0βˆ’6 = βˆ’6 =
βˆ’1
2
Answer: x-intercept none
y-intercept (0, -1/2)
2π‘₯
27) 𝑓(π‘₯) = π‘₯ 2 βˆ’9
x-intercept
2x = 0
x = 0/2
x=0
y-intercept
𝑓(0) =
2βˆ—0
02 βˆ’9
=
0
βˆ’9
=0
Answer: x-intercept (0,0)
y-intercept (0,0)
π‘₯+2
29) 𝑓(π‘₯) = π‘₯ 2 +16
x-intercept
x+ 2 = 0
x = -2
y-intercept
𝑓(0) =
0+2
02 +16
=
2
16
=
1
8
Answer: x-intercept (-2,0)
y-intercept (0, 1/8)
31) 𝑓(π‘₯) =
5π‘₯
π‘₯ 2 +9
x-intercept
5x = 0
x = 0/5
x=0
y-intercept
5βˆ—0
0
𝑓(0) = 02 +9 = 9 = 0
Answer: x-intercept (0,0)
33) 𝑓(π‘₯) =
y-intercept (0,0)
2π‘₯βˆ’6
π‘₯+3
2
1
𝑦= =2
Answer: y = 2
3π‘₯+12
35) 𝑓(π‘₯) = π‘₯ 2 βˆ’3π‘₯βˆ’4
𝑦 = π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑦 = 0 𝑠𝑖𝑛𝑐𝑒 π‘™π‘Žπ‘Ÿπ‘”π‘’π‘Ÿ 𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘ 𝑖𝑛 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ
Answer: y = 0
37) 𝑓(π‘₯) =
3π‘₯ 2 βˆ’10π‘₯βˆ’8
π‘₯ 2 βˆ’4
3
𝑦=1=3
Answer: y = 3
39) 𝑓(π‘₯) =
π‘₯ 2 βˆ’16
π‘₯ 2 βˆ’π‘₯
1
𝑦=1=1
Answer: y = 1
41) 𝑓(π‘₯) =
3
π‘₯βˆ’6
π‘™π‘Žπ‘Ÿπ‘”π‘’π‘ π‘‘ 𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘ 𝑖𝑠 𝑖𝑛 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ π‘ π‘œ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑠 𝑦 = 0
Answer: y = 0
2π‘₯
43) 𝑓(π‘₯) = π‘₯ 2 βˆ’9
π‘™π‘Žπ‘Ÿπ‘”π‘’π‘ π‘‘ 𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘ 𝑖𝑠 𝑖𝑛 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ π‘ π‘œ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑠 𝑦 = 0
Answer: y = 0
π‘₯+2
45) 𝑓(π‘₯) = π‘₯ 2 +16
π‘™π‘Žπ‘Ÿπ‘”π‘’π‘ π‘‘ 𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘ 𝑖𝑠 𝑖𝑛 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ π‘ π‘œ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑠 𝑦 = 0
Answer: y = 0
5π‘₯ 2
47) 𝑓(π‘₯) = π‘₯ 2 +9
5
1
𝑦= =5
Answer: π’š = πŸ“
49) 𝑓(π‘₯) =
𝑦=
π‘₯2
2π‘₯
=
π‘₯
2
π‘₯ 2 +5π‘₯+1
2π‘₯+3
1
2
= π‘₯
𝟏
Answer: π’š = 𝟐 𝒙
51) 𝑓(π‘₯) =
𝑦=
12π‘₯ 2
4π‘₯
12π‘₯ 2 +5π‘₯+1
4π‘₯βˆ’5
= 3π‘₯
Answer: y = 3x
53) 𝑓(π‘₯) =
𝑦=
2π‘₯ 2
4π‘₯
2π‘₯ 2
4π‘₯βˆ’1
π‘₯
2
1
2
= = π‘₯
𝟏
Answer: π’š = 𝟐 𝒙
55) 𝑓(π‘₯) =
𝑦=
2π‘₯ 3
6π‘₯ 2
2π‘₯ 3 +3π‘₯ 2 βˆ’5
6π‘₯ 2 +6π‘₯βˆ’1
π‘₯
3
1
3
= = π‘₯
𝟏
Answer: π’š = πŸ‘ 𝒙
57) 𝑓(π‘₯) =
π‘₯3
π‘₯ 2 +1
π‘₯3
𝑦 = π‘₯2 = π‘₯
Answer: y = x