Electronic Transport in disordered alloys with short-range order: microstructural and concentration dependence Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro1 and H. Ebert2 1 University of Warwick, 2 Universitat Munchen, 3 University of Edinburgh 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Electrons and Disorder - An Effective Lattice 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Electrons and Disorder - An Effective Lattice 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Electrons and Disorder - An Effective Lattice 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Electrons and Disorder - An Effective Lattice P < Gij >= Gij0 + kl Gik0 Ξkl < Glj > P Ḡ (k) = N1 j < Gij > e ik·(Ri −Rj ) = (G 0,−1 (k) − Ξ(k))−1 Ξ(k) is a self energy. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Cluster Approximation 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Cluster Approximation GIJγ = [G 0,−1 + Ξ − V γ ]−1 IJ P γ γ P(γ)GIJ = ĜIJ ≈< GIJ > 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Cluster Approximation GIJγ = [G 0,−1 + Ξ − V γ ]−1 IJ P γ γ P(γ)GIJ = ĜIJ ≈< GIJ > P R ĜIJ = Ω1BZ Kn [G 0 (k) − Ξ(Kn ]−1 e iKn ·(RI −RJ ) dkn . 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Scattering path operator (SPO) for an electron, moving in an effective medium mimicking the average motion in a disordered system τ̂ ij = t̂ δij + X t̂ (G (Ri − Rk ) + δ Ĝ (Ri − Rk ))τ̂ kj . k6=i 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Scattering path operator (SPO) for an electron, moving in an effective medium mimicking the average motion in a disordered system τ̂ ij = t̂ δij + X t̂ (G (Ri − Rk ) + δ Ĝ (Ri − Rk ))τ̂ kj . k6=i Effective medium must be translationally invariant so 1 τ̂ = ΩBZ ij Z dk[t̂ −1 − G (k) − δ Ĝ (k)]−1 e ik·(Ri −Rj ) . ΩBZ 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Scattering path operator (SPO) for an electron, moving in an effective medium mimicking the average motion in a disordered system τ̂ ij = t̂ δij + X t̂ (G (Ri − Rk ) + δ Ĝ (Ri − Rk ))τ̂ kj . k6=i Effective medium must be translationally invariant so 1 τ̂ = ΩBZ ij Z dk[t̂ −1 − G (k) − δ Ĝ (k)]−1 e ik·(Ri −Rj ) . ΩBZ Coarse graining in real and reciprocal space (dynamical cluster approximation (DCA) (M.Jarrell et al.) 1 X iKn ·(RI −RJ ) = δIJ . e Nc Kn 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Nc τ̂ (Kn ) = ΩBZ Z d k̃[t̂ −1 − G (k̃ + Kn ) − δ Ĝ (Kn )]−1 . Ωt 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Nc τ̂ (Kn ) = ΩBZ Z d k̃[t̂ −1 − G (k̃ + Kn ) − δ Ĝ (Kn )]−1 . Ωt Multiple scattering between cluster sites I and J τ̂ IJ = 1 X τ̂ (Kn )e iKn ·(RI −RJ ) . Nc Kn 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U DFT for disordered systems with SRO: KKR-NLCPA Nc τ̂ (Kn ) = ΩBZ Z d k̃[t̂ −1 − G (k̃ + Kn ) − δ Ĝ (Kn )]−1 . Ωt Multiple scattering between cluster sites I and J τ̂ IJ = 1 X τ̂ (Kn )e iKn ·(RI −RJ ) . Nc Kn Finally specifying the SPO for impurity clusters, τγIJ , of atoms embedded into the NLCPA medium. and taking a weighted average (including SRO) fixes the NLCPA medium P γ Pγ τγIJ = τ̂ IJ . 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Illustration with CuZn 80 ordered (b) Density of States (states/atom/Ry) Density of States (states/atom/Ry) 60 50 40 30 20 10 Cu Zn (a) 70 60 50 40 30 20 10 0 0 0.1 0.2 0.3 0.4 0.5 Energy (Ry) 0.6 0.7 0 0 Density of States (states/atom/Ry) 60 0.1 0.2 0.3 0.4 0.5 0.6 0.7 total Nc=2 Cu-Cu Cu-Zn Zn-Cu Zn-Zn total Nc=16 (b) 50 40 30 20 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 EF | 0.7 The DOS of the Cu50Zn50 alloy system (centre), ordered Cu-Zn(left) and elements Cu and Zn (right). 2 1 2 2 1 2 1 Julie Staunton , S. Lowitzer , P. R.Rev. TulipB3 ,72, D. 045101, Koedderitzsch , A. Marmodoro Electronic Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U D.A.Rowlands et al., Phys. (2005);Phys. Rev. B 73, 165122, (2006). Cu50Zn50 - short-ranged order and cluster defects Density of States (states/atom/Ry) 60 total Nc=2 Cu-Cu Cu-Zn Zn-Cu Zn-Zn total Nc=16 (b) 50 40 30 20 10 EF | 0.7 0 0 60 0.1 0.2 0.4 0.5 0.6 60 total Cu-Cu Cu-Zn Zn-Cu Zn-Zn (f) α=-1.0 50 0.3 total Cu-Cu Cu-Zn Zn-Cu Zn-Zn (f) α=+1.0 50 40 40 30 30 20 20 10 10 0 0 0.1 0.2 0.3 0.4 Energy (Ry) 0.5 0.6 EF | 0.7 0 0 0.1 0.2 0.3 0.4 Energy (Ry) 0.5 0.6 EF | 0.7 The DOS of Cu50Zn50 with short-ranged order (left), random (centre) and short-ranged clustering (right). 2 1 2 2 1 2 1 Julie Staunton , S. Lowitzer , P. R.Rev. TulipB3 ,72, D. 045101, Koedderitzsch , A. Marmodoro Electronic Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U D.A.Rowlands et al., Phys. (2005);Phys. Rev. B 73, 165122, (2006). The Conductivity; Kubo-Greenwood linear response From the symmetric part of the conductivity tensor of form, C = Tr < O1 G O2 G > , the d.c. conductivity is σµν where = 1 lim [σ̃µν (E + , E + ) − σ̃µν (E − , E + ) − 4 η→0 σ̃µν (E + , E − ) + σ̃µν (E − , E − )] E + = EF + iη, E − = EF − iη, η → 0. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U The Conductivity; Kubo-Greenwood linear response From the symmetric part of the conductivity tensor of form, C = Tr < O1 G O2 G > , the d.c. conductivity is σµν where = 1 lim [σ̃µν (E + , E + ) − σ̃µν (E − , E + ) − 4 η→0 σ̃µν (E + , E − ) + σ̃µν (E − , E − )] E + = EF + iη, E − = EF − iη, η → 0. In the KKR formalism σ̃µν (z1 , z2 ) = − 4m2 X < Jµi (z2 , z1 )τ ij (z1 )Jνj (z1 , z2 )τ ji (z2 ) > πNΩ~3 i,j where Jµi is a current operator associated with site i . 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U The Conductivity; Kubo-Greenwood linear response From the symmetric part of the conductivity tensor of form, C = Tr < O1 G O2 G > , the d.c. conductivity is σµν where = 1 lim [σ̃µν (E + , E + ) − σ̃µν (E − , E + ) − 4 η→0 σ̃µν (E + , E − ) + σ̃µν (E − , E − )] E + = EF + iη, E − = EF − iη, η → 0. In the KKR formalism σ̃µν (z1 , z2 ) = − 4m2 X < Jµi (z2 , z1 )τ ij (z1 )Jνj (z1 , z2 )τ ji (z2 ) > πNΩ~3 i,j where Jµi is a current operator associated with site i . The NLCPA enables the average to be taken (vertex corrections included). 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of Cux Zn1−x Alloys 20 10 -6 ρ (10 Ohm cm) 15 5 0 0 0.2 0.4 0.6 0.8 1 C The residual resistivity of the Cux Zn1−x alloy system with random disorder (red lines, crosses), SRO (green, asterisks) and SR-clustering (blue, boxes). (Results without vertex corrections are also shown). P.R.Tulip et al., Phys. Rev. B 77, 165116, (2008) 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of Agx Pd1−x Alloys Guenault total disorder SRO clustering 30 -6 ρ (10 Ohm cm) 40 20 10 0 0 0.2 0.4 0.6 0.8 1 X The residual resistivity of the Agx Pd1−x alloy system with random disorder (blue diamonds), SRO (orange circles) and SR-clustering (black triangles). The experimental results of Guenault et al. are also shown (full red circles). P.R.Tulip et al., Phys. Rev. B 77, 165116, (2008) 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U The Slater-Pauling curve and ferromagnetic alloys Atoms Energy Fe Atoms Energy Alloy Fe Fe Ni Fe, Ni Antibonding V Fe, Ni Bonding Antibonding Fe, V V Fe, V Bonding Ni Fe, Ni Alloy Fe Fe 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U The Slater-Pauling curve and ferromagnetic alloys Atoms Energy Fe Atoms Energy Alloy Alloy Antibonding Fe, V Fe Fe Ni Fe, Ni Antibonding V V Fe, V Bonding Ni Fe Fe ntot(E) (sts./eV) 1.6 1.6 0.8 ↓ Fe, Ni Bonding ntot(E) (sts./eV) Fe, Ni 0 ↑ 0.8 0 -10 -8 -6 -4 -2 0 2 4 energy (eV) 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of FeCr, FeV Alloys The residual resistivity of iron-rich FeCr and FeV alloys. (Experimental data from Nikoleav et al. for FeCr). 14 1000 total conductivity σ↑ σ↓ 10 100 8 6 Fe1-xCrx (Expt.) Fe1-xCrx (Theory) Fe1-xVx (Theory) 4 σ (a.u.) -6 ρ (10 Ohm cm) 12 10 2 0 0 0.02 0.04 0.06 0.08 0.1 x 0.12 0.14 0.16 0.18 0.2 1 0.04 0.06 0.08 0.1 0.12 x 0.14 0.16 0.18 0.2 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of FeCr, FeV Alloys The residual resistivity of iron-rich FeCr and FeV alloys. (Experimental data from Nikoleav et al. for FeCr). 14 1000 total conductivity σ↑ σ↓ 10 100 8 6 σ (a.u.) -6 ρ (10 Ohm cm) 12 Fe1-xCrx (Expt.) Fe1-xCrx (Theory) Fe1-xVx (Theory) 4 10 2 0 0 0.02 0.04 0.06 0.08 0.1 0.12 x 0.14 0.16 0.18 1 0.2 0.04 0.08 0.06 0.1 0.12 x 0.14 0.16 0.18 0.2 14 -6 ρ (10 Ohm cm) 12 10 8 Fe1-xCrx (Expt.) Fe1-xCrx (CPA) Fe1-xCrx (NLCPA clustering) Fe1-xCrx (NLCPA SRO) Fe1-xCrx (NLCPA disordered) Fe1-xVx (CPA) Fe1-xVx (NLCPA SRO) 6 4 2 0 0 0.02 0.04 0.06 0.08 0.1 x 0.12 0.14 0.16 0.18 0.2 S.Lowitzer et al., Phys. Rev. B 79, 115109, (2009). 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U How resistivity can reduce when an alloy is deformed. For a class of transition metal materials residual resistivity decreases as the materials are deformed and SRO is removed. Typically alloys rich in late transition metals such as Ni, Pd or Pt,alloyed to a mid-row element such as Cr, Mo or W. Simple model of ‘working’ of an alloy is assumed to reduce the number of unlike nearest neighbours to an atom on the average. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U How resistivity can reduce when an alloy is deformed. For a class of transition metal materials residual resistivity decreases as the materials are deformed and SRO is removed. Typically alloys rich in late transition metals such as Ni, Pd or Pt,alloyed to a mid-row element such as Cr, Mo or W. Simple model of ‘working’ of an alloy is assumed to reduce the number of unlike nearest neighbours to an atom on the average. For late-row TM, EF top of d-bands, DOS large, d-orbitals pointing between nearest neighbours. ’Working’ an late TM-rich alloy reduces no. of unlike nearest neighbours - electron hopping between neighbouring late TM atoms enhanced at EF . Larger Fermi velocity, hence reduced resistivity. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of NiMo, NiCr,PdW 90 80 -6 ρ (10 Ohm cm) 70 60 50 40 CPA total disorder SRO clustering 30 20 10 0 Ni0.8Cr0.2 Ni0.8Mo0.2 Pd0.8W0.2 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of NiMo, NiCr,PdW 90 80 -6 ρ (10 Ohm cm) 70 60 50 40 CPA total disorder SRO clustering 30 20 10 0 Ni0.8Mo0.2 Pd0.8W0.2 σNi-Ni σMo-Mo σNi-Mo σNi-Ni s-p-s σNi-Ni s-p-d σNi-Ni p-d-p σNi-Ni p-d-f σNi-Ni d-f-d 20 15 σ (a.u.) Ni0.8Cr0.2 10 5 0 SRO total disorder clustering 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Residual Resistivity of NiMo, NiCr,PdW 90 80 -6 ρ (10 Ohm cm) 70 60 50 40 CPA total disorder SRO clustering 30 20 10 0 Ni0.8Mo0.2 Pd0.8W0.2 σNi-Ni σMo-Mo σNi-Mo σNi-Ni s-p-s σNi-Ni s-p-d σNi-Ni p-d-p σNi-Ni p-d-f σNi-Ni d-f-d 20 15 σ (a.u.) Ni0.8Cr0.2 10 5 0 SRO total disorder clustering 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Summary DFT for disordered systems with SRO,SR-clustering. Kubo-Greenwood linear response theory for electronic transport. Effect of composition and number of like nearest neighbours on residual resistivity. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Summary DFT for disordered systems with SRO,SR-clustering. Kubo-Greenwood linear response theory for electronic transport. Effect of composition and number of like nearest neighbours on residual resistivity. Cux Zn1−x , Agx Pd1−x . SRO reduces resistivity,ρ (EF away from d-bands). Ferromagnetic alloys, FeCr, FeV. ρ insensitive to dopant concentration, SRO. Link to Slater-Pauling curve. Late row TM-rich alloys, (e.g.NiMo, NiCr,PdW,PdAg) - ρ can reduce when alloy is deformed. 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U Summary DFT for disordered systems with SRO,SR-clustering. Kubo-Greenwood linear response theory for electronic transport. Effect of composition and number of like nearest neighbours on residual resistivity. Cux Zn1−x , Agx Pd1−x . SRO reduces resistivity,ρ (EF away from d-bands). Ferromagnetic alloys, FeCr, FeV. ρ insensitive to dopant concentration, SRO. Link to Slater-Pauling curve. Late row TM-rich alloys, (e.g.NiMo, NiCr,PdW,PdAg) - ρ can reduce when alloy is deformed. References Poster P516 - Alberto Marmodoro et al. KKR-NLCPA - D. A. Rowlands, J. B. Staunton and B. L. Györffy, Phys. Rev. B 67, 115109 (2003). Electronic structure and SRO - D. A. Rowlands et al., Phys. Rev. B 72, 045101 (2005); D. A. Biava et al., Phys. Rev. B 72, 113105 (2005). DFT, disorder and SRO -D. A. Rowlands et al., Phys. Rev. B 73 165122 (2006). Conductivity - P.R.Tulip et al. Phys. Rev. B 77, 165116, (2008). FeCr,FeV - S. Lowitzer et al., Phys. Rev. B 79, 115109, (2009). K-state alloys - S. Lowitzer et al., submitted to EPL, (2010). NLCPA review -D. A. Rowlands, Rep.Prog.Phys. 72, 086501, (2009). 2 2 1 Julie Staunton1 , S. Lowitzer2 , P. R. Tulip3 , D. Koedderitzsch2 , A. Marmodoro Electronic 1Transport and H. Ebert in disordered University alloys withof short-range Warwick, order: m U
© Copyright 2026 Paperzz