US-China Winter School New Functionalities in Glass Why Does Glass Break? Some considerations of the mechanical properties of glass Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering 2010 US-China Winter School Richard K. Brow [email protected] IMI-1 If glass was 100X stronger, what *new* applications would result? 2010 US-China Winter School Richard K. Brow [email protected] IMI-2 New applications will benefit from stronger glass….. 2010 US-China Winter School Richard K. Brow [email protected] IMI-3 Apple Store, 5th Ave., NYC 2010 US-China Winter School Glasgow, Scotland Richard K. Brow [email protected] IMI-4 Train Station/Strasbourg, France 2010 US-China Winter School Richard K. Brow [email protected] IMI-5 Emilio Spinosa, O-I, Vancouver, June 2009 2010 US-China Winter School Richard K. Brow [email protected] IMI-6 Strong glass comes in handy for other applications 2010 US-China Winter School Richard K. Brow [email protected] IMI-7 Our Outline 1. Background Information • Elastic modulus • Fracture mechanics and strength • Fatigue • Strengthening 2. Two-point bend studies of pristine glass 2010 US-China Winter School Richard K. Brow [email protected] IMI-8 Some useful references: • A. Varshneya, “Fundamentals of Inorganic Glasses”, Society of Glass Technology (2006)- chap. 18 • “Elastic Properties and Short-to Medium-Range Order in Glasses”, Tanguy Rouxel, J. Am. Ceram. Soc., 90 [10] 3019–3039 (2007) • “Environmentally Enhanced Fracture of Glass: A Historical Perspective,” S. W. Frieman, S.M. Weiderhorn, and J.J. Mecholsky, J. Am. Ceram. Soc. 92[7] 1371-1382 (2009) • M. Ciccotti, “Stress-corrosion mechanisms in silicate glasses,” J. Phys. D: Appl. Phys. 42, 214006 (2009). • C. R. Kurkjian, P. K. Gupta, R. K. Brow, and N. Lower,” The intrinsic strength and fatigue of oxide glasses’, J. Noncryst. Solids, 316, 114 (2003). 2010 US-China Winter School Richard K. Brow [email protected] IMI-9 Can we connect mechanical performance to the molecular structure of glass? U r0 r U0 E 2010 US-China Winter School Richard K. Brow [email protected] IMI-10 Elastic Modulus Definitions? Why should we care about modulus? 2010 US-China Winter School Richard K. Brow [email protected] IMI-11 Elastic Modulus- resistance to deflection x Why is the elastic modulus of a glass important? • Stiffer hard-drive disks (minimize deflection at high rpm’s) • Stiffer glass-fiber reinforces composites (larger windturbine blades) • Reduce the thickness (and weight) of architectural glass) • Increase the stiffness of glass-bearing structures (buildings, bio-glass scaffolds, etc.) • Design glass or glass-ceramic matrices for aerospace applications x x E Poisson‟s Ratio y, 2010 US-China Winter School Richard K. Brow [email protected] z IMI-12 Elastic Modulus Is Related To The Strength of Nearest Neighbor Bonds U F r0 r U0 Force = F = - dU/dr Stiffness = S0 = (dU2/dr2) r = r0 Elastic Modulus: Pascals = J/m3 a measure of the volume density of strain energy (E≈U0/V0) Elastic Modulus = E = S / r0 Bulk Modulus: 2 K 2010 US-China Winter School r r0 Richard K. Brow [email protected] V0 U V mn 2 V0 9V 0 U 0 IMI-13 From atomistic to continuum properties: 2 K V0 U V mn 2 U 9V 0 V0 0 Multi-component glasses: U 0 fi H V0 H ai x H 0 f ai ( A) / fiM y H 0 f i / (B ) i H 0 f ( AxB y ) i: density fi: molar fraction of ith component Mi: molar mass of ith component Hai: enthalpy of ith component (Born-Haber cycle) 2010 US-China Winter School Richard K. Brow [email protected] IMI-14 E and Tg are related within a composition class Rouxel, J. Am. Ceram. Soc., 90 [10] 3019–3039 (2007) 2010 US-China Winter School Richard K. Brow [email protected] IMI-15 More cross-links: greater E Rouxel, J. Am. Ceram. Soc., 90 [10] 3019–3039 (2007) 2010 US-China Winter School Richard K. Brow [email protected] IMI-16 Poisson‟s ratio appears to be sensitive to structure: packing density and „network dimensionality‟ 2010 US-China Winter School Richard K. Brow [email protected] IMI-17 2010 US-China Rouxel, J. Am. Winter School Richard K. Brow Ceram. Soc., 90 [10] 3019–3039 (2007) [email protected] IMI-18 2010 IMI Rouxel, Richard K. Brow J. Am. Ceram. Soc., 90 [10] 3019–3039 (2007) [email protected] IMI-19 The temperature-dependence of the Poisson‟s ratio may indicate changes in structure through the glass transition 2010 IMI Rouxel, Richard K. Brow J. Am. Ceram. Soc., 90 [10] 3019–3039 (2007) [email protected] IMI-20 Summary: Elasticity •There is a limited correlation between E and Tg within compositional series, but not necessarily between compositional types •High elastic moduli are favored by structural disorder and atomic packing seems to be more important than bond strength •Poisson‟s ratio ( ) correlates with atomic packing density and with network dimensionality (polymerization) •The temperature dependence of elastic properties above Tg may be related to “fragile” and “strong” viscosity behavior. 2010 US-China Winter School Richard K. Brow [email protected] IMI-21 Glass Strength What factors determine the strength of glass? 2010 US-China Winter School Richard K. Brow [email protected] IMI-22 Theoretical Strength Can Be Estimated From the Potential Energy Curve (Orowan) m = 2 f= E / a0 sin( x/ ) dx = m/( ) m 1/2 = [ E / a ] m f 0 a0 If E = 70 GPa, f = 3.5 J/m2 and a0 = 0.2nm, then m= 2010 US-China Winter School Richard K. Brow [email protected] 35 GPa ! IMI-23 How does the addition of Na2O affect the Young’s modulus and fracture surface energy of silica glass? Consider what Prof. Pantano discussed the other day…. 2010 US-China Winter School Richard K. Brow [email protected] IMI-24 Practical strengths are significantly less than the theoretical strengths: Common glass products Freshly drawn glass rods Abraded glass rods Wet, scored glass rods Armored glass Handled glass fibers Freshly drawn glass fibers Most metals, including steels 2010 US-China Winter School Richard K. Brow [email protected] 14-70 MPa 70-140 MPa 14-35 MPa 3-7 MPa 350-500 MPa 350-700 MPa 700-2100 MPa 140-350 MPa IMI-25 C. E. Inglis (1913): flaws acted as stress concentrators A.A Griffith (1921): critical flaws determine strength Stress enhancement by flaws with length 2c and radius : yy ≈ 2 1/2 (c/ ) a Calculated strength with critical flaw c*: f = [2 1/2 E / c*] f If E = 70 GPa, and f = 3.5 J/m2 Then a crack of 100 microns will result in a failure stress of ≈ 25 MPa 2010 US-China Winter School Richard K. Brow [email protected] IMI-26 Fracture mechanics allow the evaluation of stresses in the vicinity of a propagating crack ij = [K / (2 r)1/2] fij ( ) Fracture criterion when stress intensity exceeds the strain energy release rate (depends on E, f) KIc = 2010 US-China Winter School Richard K. Brow [email protected] 1/2 ( c) a IMI-27 Cathodoluminescence measurements of stress distributions around crack tips (Pezzotti and Leto, 2007) 2010 US-China Winter School Richard K. Brow [email protected] IMI-28 PF, cumulative failure prob. 2010 US-China Winter School 1 m P d ( exp m 2d 2 ) 2 ln 2 ln 1 ln ln (1-PF)-1 P, probability density An aside: Weibull Statistics d , applied stress PF m ln ln 0 m m 1.0 PF 1 ln exp 0 m1 m2 Note: same „average‟ fracture strength, but m1<m2 (broader distribution of strengths). , applied stress Richard K. Brow [email protected] IMI-29 Room temperature tensile tests of pristine silica fibers drawn and tested in vacuum- bimodal distribution 14GPa 9GPa Smith and Michalske, 1992 2010 US-China Winter School Richard K. Brow [email protected] IMI-30 Flame-attenuation of optical fibers Failure strength (GPa) The Ultimate Strength of Glass Silica Nanowires, G. Brambilla and DN Payne, Nano Letters, 9[2] 831 (2009) Fiber diameter (nm) 2010 US-China Winter School Richard K. Brow [email protected] IMI-31 E-glass fibers (tensile tests, in air) Lower soak temperatures lead to bimodal strength distributions Cameron, 1968 2010 US-China Winter School Richard K. Brow [email protected] IMI-32 Concentric ring tests, abraded Corning glass 1737, two different thicknesses. Gulati, et al., Ceramic Bulletin, 83[5] 14, 2004 2010 US-China Winter School Richard K. Brow [email protected] IMI-33 Mechanical properties depend on glass structure K/Al-metaphosphate glasses Baikova, et al. Glass Phys. Chem., 21[2] (1995) 115. E Hv LN RT 2010 US-China Winter School Richard K. Brow [email protected] IMI-34 Pukh et al., 2005 2010 US-China Winter School Richard K. Brow [email protected] IMI-35 MD Simulations of fracture reveal the development of cavities that coalesce to form the failure site Pedone et al., 2008 2010 US-China Winter School Richard K. Brow [email protected] IMI-36 Quenched and annealed soda-lime glasses at 5GPa tension S. Ito and T. Taniguchi, JNCS (2004) 2010 US-China Winter School Richard K. Brow [email protected] IMI-37 There may be experimental evidence for cavitation near the tips of slow-moving cracks Aluminosilicate glass, 10-11 m/s, 45% RH, AFM Images Célarié, et al., PRL (2003) Formation of „nano-cavities‟ interpreted as evidence for „nanoductile‟ fracture of glass! 2010 US-China Winter School Richard K. Brow [email protected] IMI-38 „Nano-ductility‟ interpretation is not universal „Post-mortem‟ AFM analyses of the opposing fracture surfaces show no evidence for the formation of nano-cavities Note the relatively rough surface Guin and Wiederhorn, PRL (2004) 2010 US-China Winter School Richard K. Brow [email protected] IMI-39 Fatigue 2010 US-China Winter School Richard K. Brow [email protected] IMI-40 An example of fatigue in glass http://www.youtube.com/watch?v=r8q-R9ZISac 2010 US-China Winter School Richard K. Brow [email protected] IMI-41 F a ilu r e S t r e n g t h ( M P a ) 10000 In s ta P r is t in e , A s - D r a w n nt St 1000 En 100 du an at eo us ic Fa ra nc P r is t in e , A n n e a le d St t ig e L im it re ng F o r m e d G la s s th ue U s e d G la s s Ef fe ct Dam aged G la s s 10 In h e re n t S tru c tu ra l F la w s F la w s F a b r i- - s c o p ic c a t io n Dam age V is ib le Dam age 1 1 e -9 1 e -8 1 e -7 1 e -6 1 e -5 1 e -4 F la w S iz e ( m ) After Mould (1967) 2010 US-China Winter School Richard K. Brow [email protected] IMI-42 Stress Corrosion: source for static fatigue- the reduction in strength with time 2010 US-China Winter School Richard K. Brow [email protected] IMI-43 Fatigue data on silica fibers Liquid nitrogen Room temperature, vacuum Room temperature, ambient conditions 2010 US-China Winter School Richard K. Brow [email protected] IMI-44 Note: residual stresses increase susceptibility to static fatigue 2010 US-China Winter School Richard K. Brow [email protected] IMI-46 Double-Cantilever Beam (DCB) used for controlled stress intensity and crack velocity experiments c V=dc/dt K=P2/f(geometry) S. W. Freiman, D. R. Mulville and P. W. Mast, J. Mater. Sci., 8[11] 1573 (1973). 2010 US-China Winter School Richard K. Brow [email protected] IMI-47 Crack propagation kinetics depend on the stress intensity Region I: stress-corrosion Region II: diffusion-limited Region III: rapid fracture (KIC) Region 0: propagation threshold 2010 US-China Winter School Richard K. Brow [email protected] IMI-48 Water and stress enhance crack growth in glass v=AKIn, where n is the „stress corrosion susceptibility factor‟ 30% 10% III Crack velocity (m/s) Region I: stresscorrosion 100% 1.0% 0.2% H2O(l) 0.017% II I SM Wiederhorn, JACerS, 50 407 (1967) 2010 US-China Winter School IMI-49 Stress Intensity Factor, KI (Nm-1/2 ) Richard K. Brow [email protected] Compositionaldependence of vK behavior in Region I Borosilicate Silica Soda-Lime Different glasses are more or less susceptible to fatigue effects – Aluminosilicate We do not understand this compositional dependence! 2010 US-China Winter School Richard K. Brow [email protected] IMI-50 Temperaturedependence of v-K behavior in Region I Wiederhorn and Bolz, JACerS, 53, 545 (1970) 2010 US-China Winter School Richard K. Brow [email protected] IMI-51 Slow crack growth is a thermally activated process Chemical rate theory has been used to explain the exponential form of the V –KI curves: V V 0 exp( E bK I / RT ) where V0 is a constant, E is the activation energy for the reaction, R is the gas constant, T is the temperature, and b is proportional to the activation volume for the crack growth process, ΔV*. Wiederhorn, et al., JACerS, 1974 2010 US-China Winter School Richard K. Brow [email protected] IMI-52 Stress-corrosion in silicate glass: a. Adsorption of a water molecule on a strained siloxane bond at a crack tip; b. Reaction based on proton and electron transfer; c. Separation of silanol groups after rupture of the hydrogen bond. Net result: extension of the crack length by one tetrahedral unit 2010 US-China Winter School Richard K. Brow [email protected] IMI-53 Stress-corrosion in silicate glass: a. Reactive molecules can donate both protons and electrons to the ruptured siloxane bond; b. Reactive molecules are small enough to reach the crack tip (<0.5 nm). Water, ammonia, hydrazine (H2N-NH2), formamide (CH3NO) 2010 US-China Winter School Richard K. Brow [email protected] IMI-54 Other ‘crack-tip chemistries’ lead to strength increasing with time •Controlled flaws (Vicker’s indents) in S-L-S •Aging in different environments •Tensile tests in inert conditions (silicone oil) •May be due to stress release- not crack geometry? Lawn et al., JACerS, 68[1] 25 (1985) 2010 US-China Winter School Richard K. Brow [email protected] IMI-55 Crack-tip sharpness depends on glass structure and corrosion conditions Change in crack tip geometry due to corrosion: (a) Flaw sharpening for stresses greater than the fatigue limit; (b) Constant flaw sharpness for stresses equal to the fatigue stress; (c) Flaw blunting for stresses below the fatigue limit. .T.-J. Chuang and E.R. Fuller, Jr. “Extended Charles-Hillig Theory for Stress Corrosion Cracking of Glass,” J. Am. Ceram. Soc. 75[3] 540-45 (1992). W.B. Hillig, “Model of effect of environmental attack on flaw growth kinetics of glass,” Int. J. Fract. 143 219-230 (2007) 2010 US-China Winter School Richard K. Brow [email protected] IMI-56 AFM detects significant morphological changes around the crack-tip in aged samples SLS glass, 45% RH Célarié, et al., JNCS (2007) • Formation of alkali-rich regions modeled by Na+-H3O+ inter-diffusion • Alkali depletion from crack-tip region leads to stress-relaxation • Crack extension threshold 2010 US-China Winter School Richard K. Brow [email protected] IMI-57 The ‘corrosion reactions’ at a crack tip are similar to those that occur at glass surfaces From Prof. Jain: A clear glass plate is made of soda lime silicate glass by pressing molten gob. It shows the following undesirable pattern upon washing in a dishwasher. Discuss this problem with your roommate. Then develop a collaborative research program to characterize and solve the problem. The proposal should be about 1500 words long. 2010 US-China Winter School Richard K. Brow [email protected] IMI-58 Water plays many roles at a crack-tip 1. Chemical attack on strained bonds to extend flaws 2. Water films adsorbed on crack surfaces 3. Capillary condensation at the crack tip 4. Water diffusion into the glass network, changing elastic properties 5. Inter-diffusion with alkali ions, changing pH and attacking glass 2010 US-China Winter School Richard K. Brow [email protected] IMI-59 Strengthening- What can we do to make glass stronger (or more reliable)? 2010 US-China Winter School Richard K. Brow [email protected] IMI-61 • Polished surfaces • Surface dealkalization • Protective coatings • Relaxation of residual stresses (annealing) • Reduction of expansion coefficients (thermal shock) • Thermal tempering • Chemical tempering • Modified compositions: – Increasing elastic modulus and/or surface energy – Reducing stress-corrosion – Propagation threshold – Crack healing 2010 US-China Winter School Richard K. Brow [email protected] IMI-62 Annealed vs. chemically tempered glass From Jill Glass, Sandia National Labs 2010 US-China Winter School Richard K. Brow [email protected] IMI-63 Two-point bend studies of the failure characteristics of silicate glasses 2010 US-China Winter School Richard K. Brow [email protected] IMI-64 We have produced and tested pristine fibers Drawing Cage Box Furnace • “Pristine” 10 cm length fibers • Fiber diameters ~125 mm. • Fibers can be tested immediately. TNL Tool and Technology, LLC – www.TNLTool.com 2010 US-China Winter School Richard K. Brow [email protected] IMI-65 We have measured failure strains using a Two-Point Bend technique 1 . 198 TNL Tool and Technology, LLC – www.TNLTool.com • Face plate velocities: 1 – 10,000 mm/sec • Liquid nitrogen, room temp/variable humidity. • Small test volume (25-100mm gauge length). 2010 US-China Winter School Richard K. Brow [email protected] f D d d *M.J. Matthewson, C.R. Kurkjian, S.T. E Gulati, f J. Am. fCer. Soc., 69, 815 (1986). IMI-66 The inert failure strain measurements are reproducible C u m u la tiv e F a ilu r e P r o b a b ility ( % ) 99 90 80 E - G la s s m = 119 60 A vg 40 = 1 2 .8 1 % Eight sets of E-glass fibers, tested in liquid nitrogen, collected over two years 20 10 S ilic a 5 m = 103 3 = 1 7 .9 8 % A vg 1 9 10 11 12 13 14 15 16 17 18 19 20 F a ilu r e S tr a in ( % ) 2010 US-China Winter School Richard K. Brow [email protected] IMI-67 The inert failure strain measurements are intrinsic Criteria for ‘intrinsic’ failure properties* •Narrow failure distributions: s(failure) < s(fiber diameter) •Failure property (strength, strain) independent of diameter *Gupta and Kurkjian, JNCS 351 (2005) 2343. Failure strain (%) 13.2 13.0 12.8 12.6 12.4 ~180yE-glass fibers/LN 2 tests = -0.00013x + 12.82 12.2 70 90 110 130 150 170 190 Fiber diameter ( m) 2010 US-China Winter School Richard K. Brow [email protected] IMI-68 Fibers fail at lower strains in ambient conditions 2.0 ln(ln(1/1-f)) 1.0 E-glass3 C1 P1 LN E-glass3 C2 P1 LN E-glass3 C3 P1 LN E-glass3 C3 P1 RH 20%RH, 26ºC 0.0 -1.0 -2.0 m = 117, 12.08% m = 113, 12.05% m = 131, 12.09% m = 142, 6.29% LN2 -3.0 -4.0 -5.0 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 ln(failure strain, %) 2010 US-China Winter School Richard K. Brow [email protected] IMI-69 Fatigue effects can be characterized Weibull Plot of 4A (0.0% B2O3) Chamber purged with controlled humidity RH / Temp. Sensor Cumulative Failure Probability (%) 99 4A o 24 C, varied RH mAvg = 181 90 80 60 40 80% RH 20 10% RH Increasing RH 10 5 Tested at 24 C and different relative humidities. FPV = 4000 m/s 3 1 5 5.5 6 6.5 7 Failure Strain (%) 2010 US-China Winter School Richard K. Brow [email protected] IMI-70 Aging effects have also been characterized Ca-aluminoborosilicates 4A Aged at o 80% RH, 50 C Tested using: LN2, 4000 m/s 90 80 60 16.0 40 Fresh 2 days 4 days 7 days 14 days 28 days 20 10 5 Aging of 4A Aging of 4A2 Aging of 4C (set 1) Aging of 4C (set 2) 15.0 Failure Strain (%) Cumulative Failure Probability (%) 99 14.0 13.0 12.0 11.0 10.0 9.0 B-free composition 8.0 3 7.0 6.0 0.0 1 3 4 5 6 7 8 9 10 12 14 1618 10.0 20.0 30.0 40.0 50.0 Time (Days) Failure Strain (%) 2010 US-China Winter School Richard K. Brow [email protected] IMI-71 What might inert 2pb studies tell us about the failure characteristics of silicate glasses? 2010 US-China Winter School Richard K. Brow [email protected] IMI-72 Compositions Studied • xNa2O * (100-x)SiO2 • x = 0, 7, 10, 15, 20, 25, 30, 35 • xK2O * (100-x)SiO2 • x = 0, 4.5, 7, 10, 15, 20, 25 • 25Na2O * xAl2O3 * (75-x)SiO2 • x = 0, 5, 10, 15, 20, 25, 30, 32.5 • xNa2O * yCaO * (100-x-y)SiO2 – Compositions studied by Ito, et al. 2010 US-China Winter School Richard K. Brow [email protected] IMI-73 Na-silicate inert failure strains depend on composition Cumulative Failure Probability (%) 99 0-100 NaSi 90 80 25-75 NaSi 60 40 20 7-93 NaSi 15-85 NaSi 10 5 3 10-90 NaSi 30-70 NaSi 20-80 NaSi 35-75 NaSi xNa2O * (100-x)SiO2 Avg m ~ 259 1 14 15 16 17 18 19 20 21 22 23 24 25 Failure Strain (%) 2010 US-China Winter School Richard K. Brow [email protected] IMI-74 Sodium silicate properties UMR Bokin Takahashi K. Karapetyan Livshits 70.0 Increasing NBO‟s 65.0 25.0 LN4000 23.0 Failure Strain (%) Elastic Modulus (GPa) 75.0 60.0 21.0 19.0 17.0 xNa2O * (1-x)SiO2 55.0 0.00 0.10 0.20 0.30 0.40 15.0 0.00 0.20 0.30 0.40 Mole Fraction Na2O Mole Fraction Na2O 2010 US-China Winter School 0.10 Richard K. Brow [email protected] IMI-75 Na-Al-silicate inert failure strains depend on composition Cumulative Failure Probability (%) 99 25-32.5-42.5 90 NaAlSi 80 60 25-30-45 NaAlSi 25-10-65 NaAlSi 25-25-50 NaAlSi 25-5-70 NaAlSi 40 20 10 5 3 1 12 25-75 Na-Si 25-20-55 NaAlSi 25-15-60 NaAlSi 13 25Na2O * (x)Al2O3 * (75-x) SiO2 14 15 16 17 18 19 20 21 22 Failure Strain (%) 2010 US-China Winter School Richard K. Brow [email protected] IMI-76 Na-Al-silicate properties depend on structure 21.0 85.0 75.0 70.0 65.0 60.0 55.0 0.00 Greater cross-linking: “stiffer” structure 0.10 0.20 0.30 19.0 18.0 Fully „cross-linked‟ 17.0 16.0 15.0 14.0 0.40 13.0 0.00 0.10 0.20 0.30 Mole Fraction Al2O3 Mole Fraction Al2O3 2010 US-China Winter School 0.25Na2O * (x)Al2O3 (0.75-x) SiO2 20.0 Failure Strain (%) Elastic Modulus (GPa) 80.0 UMR Livshits Yoshida Richard K. Brow [email protected] IMI-77 Inert failure strain decreases for ‘crosslinked’ structures 26.0 NAS Failure Strain, % 24.0 NS KS 22.0 SLS 20.0 18.0 16.0 14.0 12.0 2.80 3.00 3.20 3.40 3.60 3.80 4.00 Bridging Oxygens/Former 2010 US-China Winter School Richard K. Brow [email protected] IMI-78 Failure strain depends on elastic modulus NAS NS KS NB SLS Silica CABS TV Panel E-Glass C-0317 Failure Strain, % 25.0 20.0 15.0 10.0 5.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0 Elastic Modulus (GPa) 2010 US-China Winter School Richard K. Brow [email protected] IMI-79 Do these measurements provide information about the strength of glass? …depends on what we know about the elastic modulus 2010 US-China Winter School Richard K. Brow [email protected] IMI-80 Elastic modulus depends on strain E-glass fibers Na/Li-phosphate fibers Bruckner, Strength of Inorg. Glass 1986 2010 US-China Winter School Richard K. Brow [email protected] IMI-81 Strain dependence of modulus has been modeled Converting failure strain to failure stress requires knowledge of Y( ): Gupta and Kurkjian, JNCS 351 (2005) 2343 Y( ) = Y0+Y1 +(Y2/2) 2 ; 2010 US-China Winter School f = f[(2/3)Y0+(Y1/6) f] Richard K. Brow [email protected] IMI-82 Failure strengths can be calculated if Y( ) is known 25.0 14.0 20.0 stress 12.0 Pukh, et al. 10.0 15.0 strain 8.0 10.0 Inert Failure Strain (%) Mechanical Property (GPa) 16.0 6.0 4.0 5.0 0.0 10.0 20.0 30.0 40.0 mole % Na2O 2010 US-China Winter School Richard K. Brow [email protected] IMI-83 • There are no apparent surface heterogeneities. • If Griffith flaws are responsible for low strengths, they will be in the range of 2-7 nm, depending on the flaw (stress concentrator) geometry. Failure Strength (GPa) . What role is played by ‘critical flaws’? 16 14 12 10 f 2010 US-China Winter School c 6GPa -> 6.7 nm flaw 8 6 4 2 0 0 1 2E 13GPa -> 1.4 nm flaw 2 5 10 15 Griffith Flaw Size (nm) Recall processing effects Richard K. Brow [email protected] IMI-84 Advantex Failure Strains Weibull distributions of fibers drawn after different melt histories. Weibull modulus (m), average failure strain ( Avg), and melt history are reported for each data set. 99 Advantex C2P5 o 2:00 at 1180 C m=7 Avg = 10.36% 90 80 60 Cumulative Failure Probability (%) Cumulative Failure Probability (%) 99 Advantex C2 P4 o 2:00 at 1200 C m=9 Avg = 10.88% 40 20 10 5 3 Advantex C2 P3 o 2:00 at 1250 C m = 60 Avg = 12.11% 1 6 2010 US-China Winter School 7 8 Advantex C2 P2 12:00 at 1350oC m = 129 Avg = 12.18% 9 10 90 80 60 40 20 Advantex C2 P10 o 2:00 at 1350 C m = 35 Avg = 11.73% 10 5 Advantex C2 P9 o 1:00 at 1350 C m=4 Avg = 9.34% 3 1 11 12 13 Failure Strain (%) Advantex C2 P2 o 12:00 at 1350 C m = 129 Advantex C2 P8 o Avg = 12.18% 0:30 at 1350 C m=3 Avg = 8.51% Richard K. Brow [email protected] 4 5 6 7 Advantex C2 P11 o 3:00 at 1350 C m = 55 Avg = 11.88% 8 9 10 11 12 13 Failure Strain (%) IMI-85 Some questions related to Prof. Sen‟s lecture: What type of heterogeneities might account for these distributions in failure strains? What techniques could you use to characterize these heterogeneities? Advantex Thermal History Summary When the glass was melted at 1350ºC, the failure strain distributions narrow with time. Failure strain distributions begin to broaden when melts are cooled to TL+50ºC. 1 3 .0 G la s s b e h a v e s s t r a n g e ly a t T L - 5 0 T F ~ 1 3 5 0 ºC 1350 1 2 .0 1300 D e g r a d in g I m p r o v in g F a ilu r e S t r a in , % 1 0 .0 9 .0 1250 8 .0 I m p r o v in g 1200 7 .0 T L ~ 1 2 0 0 ºC M e lt in g T e m p e r a t u r e ( C ) 1 1 .0 Crystallites form 6 .0 1150 F a ilu r e S t r a in s 5 .0 M e lt in g T e m p e r a t u r e T h e r m a l H is t o r y 4 .0 1100 0 :0 0 2010 US-China Winter School 2 :0 0 4 :0 0 6 :0 0 8 :0 0 1 0 :0 0 1 2 :0 0 1 4 :0 0 1 6 :0 0 1 8 :0 0 2 0 :0 0 2 2 :0 0 2 4 :0 0 2 6 :0 0 2 8 :0 0 Richard T im eK. Brow [email protected] IMI-87 How does glass break? 2010 US-China Winter School Richard K. Brow [email protected] IMI-88 Inert ‘failure rate’ studies 99 99 90 m 1 0 -1 0 -8 0 C u m u la tiv e F a ilu r e P r o b a b ility ( % ) C u m u la tiv e F a ilu r e P r o b a b ility ( % ) S ilic a =132 A vg 80 60 40 20 5 ‘Normal’ Inert m / s Fatigue 1 0 , 0 0 0 10 m /s 5 3 In c r e a s i n g V fp 1 1 6 .5 90 SLS 80 m A vg= 1 8 9 60 40 20 10 5 3 4 ,0 0 0 m /s 5 m /s D e c r e a s i n g V fp 1 17 1 7 .5 18 1 8 .5 F a ilu re S tra in (% ) 2010 US-China Winter School Inert Delayed Failure Effect 16 1 6 .5 17 1 7 .5 18 F a ilu re S tra in (% ) Richard K. Brow [email protected] IMI-89 ln (failure strain, %) Inert ‘failure rate’ studies 2.9 2.89 2.88 2.87 2.86 2.85 2.84 2.83 2.82 2.81 2.8 n = 1 / (d ln( / d ln(Vfp) ) 10-10-80 SLS Silica 0.0 2010 US-China Winter School n = 365 1.0 2.0 3.0 4.0 5.0 6.0 ln (Vfp) Richard K. Brow [email protected] 7.0 8.0 9.0 10.0 IMI-90 The inert delayed failure effect depends on structure Inert Delayed Failure Effect ( 50- 4000)/ 50) 0.100 NAS NS KS SLS 0.080 0.060 0.040 0.020 0.000 -0.020 2.80 3.00 3.20 3.40 3.60 3.80 4.00 Bridging Oxygens/Former 2010 US-China Winter School Richard K. Brow [email protected] IMI-91 Failure strain measurements also correlate with crack initiation loads 0.25Na2O * (x)Al2O3 * (0.75-x) SiO2 21 2.0 20 Failure Strain (%) 19 1.5 1.2 More Brittle Crack initiation load (N) 1.7 1.0 0.7 17 16 15 14 0.5 Satoshi Yoshida, 2003 0.2 -0.10 0.00 0.10 0.20 0.30 0.40 Mole Fraction Al2O3 2010 US-China Winter School 18 Richard K. Brow [email protected] 13 -0.10 0.00 0.10 0.20 0.30 0.40 Mole Fraction Al2O3 IMI-92 Failure strain measurements may provide information about ‘less brittle’ glasses Setsuro Ito, 2002 2010 US-China Winter School Richard K. Brow [email protected] IMI-93 “Brittleness parameter” has been determined from indentation measurements 3/2 Brittlenes s B 2 . 39 P 1/ 4 C a P is applied load, C is crack length, and a is Vickers indentation diagonal length Setsuro Ito, 2002 2010 US-China Winter School Richard K. Brow [email protected] IMI-94 Soda-lime silicate glasses exhibit the ‘delayed failure’ effect Cumulative Failure Probability (%) 99 90 80 15-5-80 SLS mAvg = 345 60 40 20-10-70 SLS mAvg = 326 Closed symbols 4000 mm/sec, Open symbols 50 mm/sec 20 10 5 15-10-75 SLS mAvg = 261 3 Each glass possesses a large IDFE. 1 17.5 18 18.5 19 19.5 20 20.5 21 Failure Strain (%) 2010 US-China Winter School Richard K. Brow [email protected] IMI-95 ‘Brittleness’ and ‘inert delayed failure’ may be related IDFE (Missouri S&T) 7.0 6.0 Soda-lime & borosilicate glasses 5.0 4.0 3.0 2.0 1.0 0.0 Silica -1.0 -2.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Brittleness (Ito) 2010 US-China Winter School Richard K. Brow [email protected] IMI-96 Is IDFE related to network relaxation? Na diffusion NBO motion? Day & Rindone, 1962 2010 US-China Winter School Richard K. Brow [email protected] IMI-97 Is there a universal dependence of glass failure characteristics on network structure? WOULD ‘INSTANTANEOUS’ FAILURE STRAINS ALL FALL ON A STRAIGHT LINE?? Failure strain, % 24.0 20.0 16.0 12.0 NS NAS KS SLS Silica CABS TV Panel E-glass C-0317 TiMgAlSi 8.0 35.0 45.0 LN2 tests at 4000 /sec 2010 US-China Winter School depends on E (IDFE≤0) 2. Silica is anomalous LN depends on network relaxation (IDFE>0) LN 55.0 65.0 75.0 85.0 95.0 105.0 Young's modulus (GPa) Richard K. Brow [email protected] IMI-98 Summary Inert failure strains are sensitive to the composition/structure of glass fibers. f increases when NBO’s replace BO’s f increases when Young’s modulus decreases Inert failure strains are dependent on the applied stressing rates (Vfp). Structure with non-bridging oxygens fail at larger strains with slower Vfp. ‘Framework’ structures do not exhibit this ‘inert delayed failure effect’. Is IDFE due to relaxation of the network? What role is played by the NBO’s? 2010 US-China Winter School Richard K. Brow [email protected] IMI-99 The NSF/Industry/University Center for Glass Research sponsored the two-point bend studies at Missouri S&T Nate Lower and Zhongzhi Tang collected the data Chuck Kurkjian (retired, AT&T) inspired the work 2010 US-China Winter School Richard K. Brow [email protected] IMI-100
© Copyright 2026 Paperzz