PreCalculus Class Notes RF4 End Behavior of Rational Functions Rational function (single fraction) Sum of proper rational function and polynomial End behavior asymptote Graph y 5 4 3 2 1 y= 2x x −1 y = 0+ 2 2 x2 − 8 y= 2 x − 2x +1 x2 − 4 y= 2x − 2 y = 2+ y= 2x x2 −1 4 x − 10 x − 2x +1 2 1 1 −3 x+ + 2 2 2x − 2 y=0 horizontal y=2 horizontal (and look, the function crosses its horizontal asymptote!) 1 1 x+ 2 2 slant y= −5 −4 −3 −2 −1−1 −2 −3 −4 −5 1 2 3 4 5 x 1 2 3 4 5 x 1 2 3 4 5 y 3 2 1 −5 −4 −3 −2 −1−1 −2 −3 −4 −5 −6 −7 −8 −9 y 5 4 3 2 1 −5 −4 −3 −2 −1−1 −2 −3 −4 −5 y 140 130 120 110 100 90 80 70 60 50 40 3 x y= x−3 27 y = x + 3x + 9 + x−3 2 30 2 y = x + 3x + 9 non-linear 20 10 −9 −8 −7 −6 −5 −4 −3 −2 −1−10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 x 1 2 3 4 5 6 7 8 9 x Finding end behavior asymptotes: rewrite as the sum of a polynomial and a proper rational expression Proper rational expression: the degree of the numerator is less than the degree of the denominator Examples y= 3x x −x+4 2 x2 − 4x − 5 y= x2 + x y= y= 3x − 4 x 2 x2 + 5 x2 ( x − 2 )( x + 3) 2 y= 2 x 2 + 3x x−2 Write the equation of the rational function whose graph has a zero (root) at x = 4; a zero at x = 2; an odd vertical asymptote at x = 1; an even vertical asymptote at x = –3; and a horizontal asymptote at y = 5.
© Copyright 2026 Paperzz