PreCalculus Class Notes RF4 End Behavior of Rational Functions

PreCalculus Class Notes RF4 End Behavior of Rational Functions
Rational
function (single
fraction)
Sum of proper
rational function
and polynomial
End behavior
asymptote
Graph
y
5
4
3
2
1
y=
2x
x −1
y = 0+
2
2 x2 − 8
y= 2
x − 2x +1
x2 − 4
y=
2x − 2
y = 2+
y=
2x
x2 −1
4 x − 10
x − 2x +1
2
1
1
−3
x+ +
2
2 2x − 2
y=0
horizontal
y=2
horizontal
(and look, the
function
crosses its
horizontal
asymptote!)
1
1
x+
2
2
slant
y=
−5 −4 −3 −2 −1−1
−2
−3
−4
−5
1
2
3
4
5
x
1
2
3
4
5
x
1
2
3
4
5
y
3
2
1
−5 −4 −3 −2 −1−1
−2
−3
−4
−5
−6
−7
−8
−9
y
5
4
3
2
1
−5 −4 −3 −2 −1−1
−2
−3
−4
−5
y
140
130
120
110
100
90
80
70
60
50
40
3
x
y=
x−3
27
y = x + 3x + 9 +
x−3
2
30
2
y = x + 3x + 9
non-linear
20
10
−9
−8
−7
−6
−5
−4
−3
−2
−1−10
−20
−30
−40
−50
−60
−70
−80
−90
−100
−110
−120
−130
−140
x
1
2
3
4
5
6
7
8
9
x
Finding end behavior asymptotes: rewrite as the sum of a polynomial and a proper rational expression
Proper rational expression: the degree of the numerator is less than the degree of the denominator
Examples
y=
3x
x −x+4
2
x2 − 4x − 5
y=
x2 + x
y=
y=
3x − 4 x 2
x2 + 5
x2
( x − 2 )( x + 3)
2
y=
2 x 2 + 3x
x−2
Write the equation of the rational function whose graph has
a zero (root) at x = 4;
a zero at x = 2;
an odd vertical asymptote at x = 1;
an even vertical asymptote at x = –3;
and a horizontal asymptote at y = 5.