Aim: How do we integrate using u-‐substitution? Get Ready: 2 1. f '(x) = 3x −1 ; f (2) = 4 f '(x) = 8x 3 + 5 2. f (1) = −4 1 f ''(x) = x3 f '(4) = 2 3. f (0) = 0 f ''(x) = sin x f '(0) = 1 4. f (0) = 6 I. U-‐Substitution-‐ Recognizing Patterns ∫ f '(g(x))g '(x)dx = f (g(x)) + C u = g(x), du = g '(x)dx ∫ f '(u)du = f (u) + C 1. f '(x) = (x + 5) (3x ) à ∫ (x 3 + 5)100 (3x 2 )dx 3 100 2 2. f '(x) = (x 2 + 1)2 (2x) à ∫ (x 2 + 1)2 (2x)dx 3. f '(x) = 5 cos(5x) à ∫ 5 cos(5x)dx 3x 4. ∫ 2 x 3 +1dx Aim: How do we integrate using u-‐substitution? −4 csc 2 (4x)dx ∫ 5. 6. 2 3 ∫ 6(6x −1) dx sin 7. ∫ 3 x cos xdx 2 x(tan x + 3)dx 4x 1. ∫ 3. 3 x 4 + 3 dx 2. sec 8. ∫ II. Additional Examples 4. ∫ sec ∫ (x ∫ 2 2 x tan x dx 2x + 2 dx + 2x −1)2 −sin x dx cos x Aim: How do we integrate using u-‐substitution? 3x 2 cos(x 3 )dx ∫ 5. ∫ cos x(sin x + 3) 6. 3 4 dx 7. ∫ 9x 2 3x 3 + 2 dx 8. 9. ∫ ∫ 10. 10x 4 +1 3 2x 5 + x dx ( x + 2)3 dx 2 x ∫ −2 csc 2 x(2 cot x + 3)3 dx
© Copyright 2026 Paperzz