American Mineralogist, Volume 63, pages 3l l-315, 1978 Crystalstructurerefinementof lawsonite WnRNTRH. Baun Department of Geological Sciences, Uniuersity o.f Illinois Chicago, Illinois 60680 Abstract LawsoniteC , a 6 r A l ," S i r r lO 7 ( O H ) r . H r O , i s f o u n d i n l o w - t e m p e r a t u r eh,i g h - p r e s s u rm e etamorphic rocks. It is a hydrous counterpart of anorthite. A specimenfrom the type locality, T i b u r o n P e n i n s u l aM , a r i n C o u n t y , C a l i f o r n i a ,w a s u s e df o r a n X - r a y s t u d y :a : 8 . 7 9 5 ( 3 ) , b : 5 . 8 4 7 ( l ) ,c : 1 3 . 1 4 2 ( 6 ) AV , : 6 7 5 . 3 A , Z - 4 , D c a t . : 3 0 8 8 g . c m - 3 , s p a c eg r o u p C c m m . Refinement of 865 F"m gave an R : 0.0256.The structure is based on a three dimensional framework generatedby cross-linkingribbons composedof edgesharing singlechains of Al coordination octahedra and lateral bridging silicategroups The openingsof the framework a c c o m m o d a t et h e C a a t o m s a n d t h e w a t e r m o l e c u l e sT. h e o b s e r v e dm e a n d i s t a n c e a s r eS i ' : O : 1 . 6 3 3A , l' O 1 . 9 1 3a n d C a ' O 2 . 4 2 1 A . T h eh y d r o g e na t o m sp a r r i c i p r r ei n b e n t a n d b i f u r c a t e dh y d r o g e nb o n d s . I n d i v i d u a l c a t i o n - a n i o nd i s t a n c e sc o n f o r m w e l l t o t h e exLendedelectrostaticvalence rule. Introduction The crystal structure of lawsonite, CaAlrSirO, ( O H ) r . H z O , w a s d e t e r m i n e db y W i c k m a n ( 1 9 4 7 ) in space group C222,. The Si-O bond lengthsin t h e S i r O , g r o u p a s f o u n d b y W i c k m a n r a n g e df r o m 1 . 5 9 t o 1 . 7 2A . S u b s e q u e n t l yt,h e s t r u c t u r ew a s r e fined by Rumanova and Skipetrova(1959). They found that it could be describedin the centric space group Ccmm and that the Si-O distanceswere lying i n a n a r r o w r a n g e :b e t w e e n1 . 6 5a n d 1 . 6 9 A .R e c e n t l y P a b s t( 1 9 7 7 )p o i n t e do u t t h a t l a w s o n i t ei s d e n s e rt h a n a n o r t h i t e ,i t s a n h y d r o u se q u i v a l e n t T . he volume per o x y g e na t o m i n l a w s o n i r ei s 1 8 . 7 4 A ,w h i l e i n a n o r t h i t e i t i s 2 0 . 9 4 4 . L a w s o n i t ei s o n e o f s e v e r a le s p e c i a l l y d e n s eh y d r o u ss i l i c a t e sf o u n d i n t h e F r a n c i s c a n F o r m a t i o n , C a l i f o r n i a .I t i s t y p i c a l o f a l o w - t e m p e r ature, high-pressuremetamorphic paragenesis. Experimental A clear, almost colorless specimen of lawsonite from the type locality, Tiburon Peninsula, Marin County, California (USNM R3922) was divided into two parts; one was ground into a spherewith a diameter of 0.04 cm, the other was used for a microprobe analysis.Data were collectedon an automatic fourcircle diffractometer (trAgKa = 0.560834), using proceduresdescribedby Baur and Khan (1970).The 0003-004x/78/0304-031 l$0200 3t I unit cell constantswere refined from the settingof20 reflectionsmeasuredon a singlecrystal X-ray diffractometer. The resulting cell constants agree closely w i t h t h o s e r e p o r t e db y D a v i s a n d P a b s t( 1 9 6 0 ) .R e ciprocal space was searched in a sphere of radius sind/tr : 0.844-'. The total number of measured r e f l e c t i o n sw a s I 1 , 2 6 8 ,w h i c h w e r e a v e r a g e dt o y i e l d 1 , 9 2 8u n i q u e r e f l e c t i o n sO . f t h e s e 1 , 0 6 3h a d a n i n tensity of less than two sigma, and were not used in the refinement. The systematic absences(hkl only presentwith I -t k : 2n; and Oklonly with I : 2n) are consistent with space group Ccmrn as noted by Rumanova and Skipetrova. The successfulrefinement confirms this choice. Lorentz-polarizationcorrectionswere applied, but becauseof the small linear absorption coefficientand the size of the crystal, an absorption correction was not necessary.Scattering factors were taken from the Internqtionql Tablesfor X-ray Crystallography (1974). The refinement of the 865 observedunique structurefactors startedwith the parameters reported by Rumanova and Skipetrova ( 1 9 5 9 )a n d r e f i n e di n a f e w c y c l e st o a n R ( : > l l F ' o l - l r c l l / > l r o l ) o f 0 . 0 2 7( w i t h a n i s o t r o p ti ce m perature factors). A difference synthesis revealed l i k e l y p o s i t i o n sf o r t h e h y d r o g e n a t o m s . U p o n f u r t h e r r e f i n e m e n ti n c l u d i n g t h e h y d r o g e n a t o m s a n R o f 0 . 0 2 5 6w a s a c h i e v e d .T h e p o s i t i o n a l( T a b l e l ) and the thermal (Table 2) parameterswere used to BAUR,' REFINEMENT OF LAWSONITE 3t2 T a b l e I L a w s o n i t e ,p o s i t i o n a lp a r a m e t e r s * Ca A& si 4m 81 8m o( r ) o(2) o(3) o(h4) o(ws) 4m 16 1 8n 8m 4m H(w) 11(oh) H(w)geon. H (oh) el . 8n 8n 8n 8n 0 . 3 3 3 0(ss ) ,, 0.98040(s) 0 ,4 0 \ 0 0.13298(3) \ 0 . 0 4 9 s( 2 ) 0 0 , 3 7 8 8 ( 1 ) o . 2 72 6( r ) 0.1378(1) 0 0.6391(1) 0 0 . 6 0 9 1( 2 ) 0 0.11690(6) 0 . 0 6 s 0 5( 8 ) 0 . 0 4 7 9( 1 ) 0 . 6 3 9( 4 ) 0 . 5 8 7( 6 ) o . 6 73 L o.5329 0.re4(3) 0 . 0 s 6( 4 ) 0,1905 0.0704 0 0 0 0 0.33 TiOr, tracesof MnO and KrO. The sum including 2HrO is 98.54 percent.This corresponds HrO and to Caon.,(Al,.ourFeo.o36Tio or3)Si2.orrOr(OH)r. shows that the crystal is close to the ideal composit i o n C a A l r S i r O ? ( O H ) r . H r O .T h i s a n a l y s i sc o r r o b o rates observations made on lawsonites from other localities(seeDavis and Pabst, 1960;Ernst eI al., l97O). Description of structure t4 * Estimated staDdard deviations are listed in parenThe theses in units of the least significant digit. posj-tions and their point synnumbers of equivalent metries are given for every atom. For atons H(w)geom and H(oh) . see text. EI calculate a final set of structure factors (Table 3'). T h e r o o t - m e a n - s q u a r et h e r m a l d i s p l a c e m e n t sa n d t h e i r o r i e n t a t i o n sa r e r e c o r d e di n T a b l e 4 . Crystal data C e l l c o n s t a n t s4 : 8 . 7 9 5 ( 3 ) ,b : 5 . 8 4 7 ( l ) , c : l3.la2(6)A; V : 675.8A3;space group Ccmm, D"^t" : 3 . 0 8 8 9 . c m ' ; Z : 4 : p ( A g K a ) : 8 . 0 5c m - l ; t r r R: 0 . 1 6 1 . A m i c r o p r o b e a n a l y s i sy i e l d e d ( w e i g h t p e r c e n t ) :3 1 . 0 9A l , O 3 , 3 7 . 7 5S i O , , 0 . 9 0F e , O , , 1 7 . 1 8C a O , 'To obtain a copy of this table order DocumentAM78-067 i r o m t h e B u s i n e s sO f f r c e , M i n e r a l o g i c a l S o c i e t y o f A m e r i c a , 1 9 0 9 K S t r e e t ,N . W . , W a s h i n g t o n ,D . C . 2 0 0 0 6 . P l e a s er e m i t $ l 0 0 i n a d v a n c ef o r t h e m i c r o f i c h e . The individual non-hydrogenatom positionsdetermined in this refinement differ on the average by 0 . 0 5 A l r o m t h e p o s i t i o n sf o u n d b y R u m a n o v a a n d Skipetrova(1959).The singlelargestdiscrepancywas observedfor O(h4) which has shifted in the courseof t h e r e f i n e m e n tb y 0 . 1 3 4 . T h e a v e r a g ec h a n g ei n t h e i n d i v i d u a lC a - O , A l - O , S i - O , O ( h 4 ) - O a n d O ( w 5 ) O d i s t a n c e si s 0 . 0 5 A . The structure can be conveniently described as c o m p o s e do f e d g e s h a r i n gc h a i n so f A l c o o r d i n a t i o n o c t a h e d r a( w i t h A l a t y : 0 . 2 5 a n d 0 . 7 5 ) a r r a n g e d p a r a l l e lt o t h e [ 0 1 0 ]d i r e c t i o n( F i g . l ) . T h e o c t a h e d r a in these chains share the edgeO(3)-O(ha). The O(2) vertices(which are not in the shared edges)of neighboring octahedra are laterally bridged by silicate groups which alternate at heights_t : 0 and 0.5. The symmetry of this ribbon of octahedra and tetrahedra i s 2 , a n d i t s c o m p o s i t i o n i s A l r S i O , o ( O H ) r .S i m i l a r ribbons have been found in vauxite (Baur and Rama Rao, 1968) where their composition is A l F e P O , ( O H ) , . G o t t a r d i ( 1 9 6 8 )h a sd e s c r i b e da n a l o gous ribbons in ilvaite, epidote, pumpellyite and chevkinite. He makes the point that theseoctahedral chains with lateral bridging tetrahedracan be consid- T a b l e 2 L a w s o n i t e ,a n i s o t r o p i ct h e r m a l p a r a m e t e r s *f o r n o n - h y d r o g e na t o m s , i s o t r o p i ct h e r m a l p a r a m e t e r s[ o r h y d r o g e na t o m " Atom Ca A,Q, Si o (1) o(2) o(3) o(h4) o(w5) H(w) H(oh) Bt, or B R -22 R 0 . 0 0 3 0 0( s ) 0 . 0 0 1 s 0( s ) 0 . 0 0 1 4 (04 ) o.ooz3(2) 0 . 0 0 2 4( 1 ) 0 . 0 0 5 3 0( 1 0 ) 0 . 0 0 3 0 9( 1 r ) 0 . 0 0 3 4 3( 1 0 ) 0 . 0 0 8 1( 4 ) 0 . o o 4 7( 2 ) 0 . 0 0 1 3 3( 2 ) o . 0 0 1 0 6( 2 ) 0 . 0 0 0 9 9( 2) 0 . 0 0 0 9( 1 ) 0 . 0 0 1 4( 1 ) 0 . 0 0 1 -(71 ) 0 . 0 0 1 9( 1 ) 0.0040(2) 2.6(O.9) 7.0(1.6) 0.oo42(2) o . 0 0 4 8( 2 ) 0.0226(7) 0 . 0 0 1 3( 1 ) 0 . 0 0 1 8( 1 ) 0 . 0 0 1 4( 1 ) * The anisorropi.c rhermal paramerers are defined by exp[-(Brrt.2 R -12 0 - 0 . 0 0 0 1 2( s ) 0 - 0 . 0 0 0 8( 1 ) 0 0 0 R R, "23 IJ 0 - 0 . 0 0 0 0 7( 2 ) o . 0 0 0 0 2( 2 ) 0 - 0 . 0 0 0 3( 1 ) 0 0 . 0 0 0 0 3( 4 ) 0 0 o . 0 0 0 4( 1 ) 0 . 0 0 0 3( 1 ) 0 . 0 0 0 4( 1 ) 0 0 0 0 + g2|k2 a B3zL + 2ltZhk + 2Btgfrl + }lzSkl)] BAUR, REFINEMENT OF LAWSONITE Table 4. Lawsonite,thermal ellipsoidsx Angle Atom Axis [1oo] 2 3 1 2 3 0 . 0 9 6( r ) 0 . 1 0 8( 1 ) 0 . r 0 9( 1 ) 0 . o 72 ( r ) 0 . 0 77 ( 1 ) 0 . 0 9 7( 1 ) 900 90 090 6 4( r o ) rs4(9) e6(2) 2 3 1 2 3 0 . 0 7 4( 1 ) 0.077(1) 0.093(r) 0.091(3) 0 , 0 9 5( 3 ) 0.rr8 (3) 2(2) 900 8 8( 2 ) 90 090 900 1 2 3 1 2 3 0.081(2) 0.095(2) 0 . 1 1 9( 1 ) 0.078(2) 0.08s(2) 0 . 1 0 8( 2 ) 5 3( 4 ) r 2 7( 4 ) r2t-(2) 1 6( 3 ) 900 74(3) 1 2 3 1 2 3 0.083(2) 0 . 0 9 r( 2 ) 0.L28(2) 0 . 1 1 1( 4 ) 0.125(3) 0.198(3) rs(2) 900 75(2) 90 090 900 caI A.t si1 o(1) o(2) o(3) o(h4) O(w5) with axis Displacement * Root-mean-square therDal axes and their orientations [oro] 90 2 6( 1 0 ) 6 s( 1 0 ) 88(2) 90 90 90 3 7( 4 ) 62(5) 6 7( 2 ) 90 90 90 90 90 [oo1] 90 0 90 8 9( 2 ) 9 7( 2 ) 7( 2 ) 92(2) 90 2(2) 0 90 90 8 9( 4 ) 1 3 0( 3 ) 4 0( 3 ) r 0 6( 3 ) 90 1 6( 4 ) 1 0 5( 2 ) 90 ls (2) 0 90 90 displacements along principal relative to a, b and c. 313 mined here, with those reported by Haga and Takeu c h i ( 1 9 7 6 )f o r i l v a i t e ( i n p a r e n t h e s e s 8 ) :. 7 9 5 ( 8 . 8 1 8 ) , 5 . 8 4 7 ( 5 . 8 5 3a) n d 1 3 . 1 4 21( 3 . 0 0 5) 4 . S t r u n z c o n c l u d e d that lawsoniteand ilvaite are isostructuraldespitethe fact that their spacegroups are different (Pcmn for ilvaite versus Ccmm for lawsonite).The similarity in the b cell constant is due to the length of the repeat unit of the octahedral-tetrahedralribbons. It corresponds to the height of two octahedra sharing an edge. Similar repeat units ranging in length from 5.6 to 5.9A can be observedin epidote,pumpellyite,perrierite and chevkinite.The similarity of the other two cell constants,however, is fortuitous becausethe arrangement of the ribbons relative to each other is clearly different in lawsonite and ilvaite as has been shown by Gottardi (1968). The relatively high density of lawsonite as compared to its anhydrous counterpart anorthite (Pabst, 1977) is related to the fact that Al is octahedrally coordinatedin lawsonitebut only four coordinatedin anorthite. Analogous changes in density accomp a n y i n g c h a n g e si n c o o r d i n a t i o n n u m b e r a r e w e l l known from many pairs of low-pressurehigh-pressure phases(for instance quartz and stishovite). Hydrogen atom positions The distance O(ha)-H(oh) based on the refined c o o r d i n a t e so f H ( o h ) i s o n l y 0 . 4 7 ( 5 ) 4 . T h e c o r r e - ered as the building blocks of structuressuch as lawsonlte. Within one of its repeat units each of the octahedral-tetrahedral ribbons is linked through four O(3) atoms to neighboring ribbons by connectingthe silicate tetrahedra directly with neighboring octahedra and through two O(l) atoms which connect two each of the tetrahedrainto an Si2O7group. Therefore the fusion of the ribbons results in a three dimensional framework of composition AlrSirO?(OH)r. This framework is sufficiently open to accomodate one calcium atom and one water molecule per formula unit thus resulting in the overall composition CaAlrSi,O,(OH)r.H,O. The Ca atom has six near neighbors at 2.400 to 2.494A in the form of a distorted octahedron (Table 5). Two additional O(3) atoms at a distanceof 2.976A are too far removed to be counted into the coordination sphere. Consequently the formula of l a w s o n i t e s h o u l d b e w r i t t e n a s C a L B r A l rSl .i,r ' oO ' (oH),.H,O. Strunz (1937) has pointed out that the cell constantsof lawsoniteand ilvaite are very similar. This is true when we compare the cell parameters deter- Fig l. Lawsonite, view parallel [010]. Next neighbors are indicated by broken lines for one each of the Ca, H(w) and H(oh) atoms. The heights of some atoms are indicated in l00y 3t4 BAUR.' REFINEMENT OF LAWSONITE T a b l e 5 L a w s o n i t e , i n t e r a t o m i c d i s t a n c e s( A ) a n d a n g l e s ( . ) * 3. Ca si-o(2) si-0(3) si-o(r) nean r.6L6(2) r.647(1) r,554(1) I.633 o(2)-o(2) 0(2)-o(3) 0(2)-0(r) o(3)-0(l) Eeans 2.659(1) 110.7(1) 2.724(1,) rL3.2(7) 2 . 6 6 1( 1 ) 1 0 9 . 0 ( r ) 2.552(L) r0r,3(t) 2.664 109.4 4 I 1 2 o_si_o si-0 (1) -si 2. At Ar.-o(h4) A!.-O(2) A!.-o(3) Eean I.867(1) 1.913(1) 1.960(1) 1,913 0-A.4,-0 0(h4)-0(2) o(h4)-o(2) o(h4)-o(3) 0(h4)-0(3) 0(2)-o(3) 0(2)-0(3) neans 2.652(1) 89.1(1) 2 . 6 9 4 ( 1 ) 9 0 .9 ( r ) 2 . 4 6 0 ( 2 ) 8 0 . 0( r ) 2 . 9 3 2 ( r ) 1 0 0 .0 ( 1 ) 2 . 7 4 0 o - ) 9 0 .0 ( 1 ) 2 . 7 3 8 ( r ) 9 0 . 0( 1 ) 2,703 90.0 ca-o(2) Ca-o(w5) ca-o(1) ca-o(3) nean of 6 nean of 8 2 . 4 0 0( 1 ) 2.433(2) 2.494(2) 2.976(7) 2,560 H(oh)-0(h4) H(oh)-o(h4) 0(h4)-0(h4) o (h4)-H (oh)-o (h4) [0.e80] 2.169 2.752(2) 116.7 H(oh)-o(2) o (h4) -o (2) o (h4) -I1 (oh) -o (2) H(oh)-H(oh) H(oh)-H(w) 2 .1 8 0 2 . 9 3 3( 1 ) r32.6 1.939 2 .0 0 3 H(w)-o(ws) Ir(w)-0 (ws)-H(w) s(w)-H(w) tt(w) -0 (ha) o(w5)-o(h4) 0(v5)-H(w)-0(h4) H(u)-0(2) 0(ws)-o(2) 0(w5)-H(w)-0(2) [ 0 .e 6 0 ] [loe .o] 1r.564) 1.898 2.669(I) r35.4 2.44s 3.229(2) 138.8 * The values in square brackeEs have been preset by assuning a knom geometry for the OH and H.0 groups. The nunbers befote tne atom designations are nultiplicities per polyhedron. A11 distances and angles involving hydrogen atoms are based on H(")*"o.. u.d H(oh)e1. (Table 1). p o s i t i o n ,c a l l e d H ( o h ) " ' i n T a b l e l , p l a c e sH ( o h ) a l most equidistantly between H(w) and a centrosymmetrically related H(oh). It also placesH(oh) within 2.18A of two O(2) atoms thus creating a bifurcated h y d r o g e n b o n d ( s e e B a u r , 1 9 6 5 ) .A c t u a l l y H ( o h ) i s even closer (2.169A) to an O(h4) atom, but sincethe a n g l eO ( h 4 ) - H ( o h ) - O ( h a ) i s I 1 6 . 7 ' i t i s a s s u m e dt h a t this contact does not representa hydrogen bond. The hydrogen atom positions as located by X-ray diffraction differ by 0.3A [distance from H(w) to H(w)*"o-l and by 0.5A [from H(oh) to H(oh)",]from the calculated positions. The true hydrogen atom positions as they could be determined by neutron diffraction are expectedto be closerto the calculated values than to the experimental X-ray values. The hydrogen bonds formed in lawsonite are long, bent, and bifurcated. therefore the thermal motion of the hydrogen bonds must be large, thus making their localization by X-ray diffraction difficult. The hydrogen positions derived here by geometric and electrostaticarguments are consistent with the infrared measurementsand their interpretation rep o r t e d b y L a b o t k a a n d R o s s m a n( 1 9 7 4 )o n l a w s o n i t e . T h e s e a u t h o r s c o n c l u d e df r o m t h e p l e o c h r o i s m of absorption spectra that all oxygen-hydrogen b o n d s i n l a w s o n i t ea r e l o c a t e d i n p l a n e sp a r a l l e l t o ( 0r 0) . s p o n d i n g O ( w 5 ) - H ( w ) d i s t a n c em e a s u r e s0 . 7 8 ( 4 ) 4 , Bond distancesand balance of valences and the angle H(w)-O(w5)-H(w) is l4l(4)'. While there is no doubt that the hydrogen atoms are in the T h e m e a n d i s t a n c eS i - O o f 1 . 6 3 3 4 ( T a b l e 5 ) i s generalvicinity of thesepositions,it is also clear that close to the value of 1.630A calculated from the rethese refined positions are not as accurate as their g r e s s i o n e q u a t i o n ( S i - O ) m e a n 1.621 + p r e c i s i o nm i g h t i m p l y . 0.0037CNM - 0.0046NC, where CNM is the mean The point symmetry of the site of the oxygen atom c o o r d i n a t i o nn u m b e r o f a l l o x y g e na t o m s i n t h e s i l i of the water molecule is mm. Assuming that the hy- cate tetrahedron and 1/C is the number of bridging drogen atom positions of the water molecule are not oxygen atoms per tetrahedron(Baur, l976). The indidisordered there are only four different orientations vidual Si-O bond lengthsconform reasonablywell to possiblefor the molecule.In two of thesethe hydrothe extendedelectrostaticvalencerule (Baur, 1970)as gen atoms would be close to the Ca atom to which can be seenfrom the calculation shown in Table 6. It O ( w 5 ) i s b o n d e d . T h i s i s a n u n l i k e l y p o s s i b i l i t y is apparent that the variations in Si-O bond lengths (Baur, 1972). Of the other two orientations one reflect the variations in bond strengths caused by w o u l d b r i n g H ( w ) w i t h i n 2 . 5 6 A o f a C a a t o m r e - different coordinations of the individual oxygen m o v e d b y 7 z bf r o m O ( w 5 ) w h i l e t h e r e m a i n i n go n e i s a t o m s . A n a l o g o u s c a l c u l a t i o n so f t h e o t h e r b o n d t h e m o s t l i k e l y c h o i c e( F i g . I ) . I n t h i s p o s i t i o n ,c a l l e d l e n g t h sy i e l d f o r A l - O ( h 4 ) 1 . 8 8 0 ,A l - O ( 2 ) 1 . 9 0 0 ,A l H ( * ) * " o - i n T a b l e l , H ( w ) i s l o c a t e d 1 . 8 9 8 A f r o m O(3) 1.960, Ca-O(2) 2.393,Ca-O(w5) 2.421 and CaO(h4). This distancecould correspond to a bent hy- O ( l ) 2 . 5 3 1 4 . T h e l a r g e s td i s c r e p a n c yo c c u r sf o r C a drogen bond, since O(w5)-O(ha) measures2.669A O ( l ) ( 0 . 0 3 7A ; , w t r i c t r i s n o t s u r p r i s i n g s i n c e p r e a n d t h e a n g l eO ( w 5 ) - H ( w ) - O ( h a ) i s 1 3 5 . 4 '( s e eB a u r , dicted bond lengths for atoms with a low formal l 9 6 s) . c h a r g eu s u a l l yg i v e l e s sa c c u r a t er e s u l t s( B a u r , 1 9 7 0 ) . The hydrogen atom of the OH group was located The shared edge O(3)-O(h4) between the two Al by calculatingits position of leastelectrostaticenergy coordination octahedra is much shorter (2.460A\ e m p l o y i n g t h e p r o g r a m M e N r o c ( B a u r , 1 9 6 5 ) .T h i s than the averageof the octahedral edgesaround Al. BAUR: REFINEMENT OF LAWSONITE T a b l e 6 . L a w s o n i t e ( r ) P a u l i n g b o n d s l r e n g t h s ,p ( O ) , r e c e i v e d b y t h e o x y g e n a t o m s . ( b ) O b s e r v e da n d c a l c u l a t e db o n d l e n g t h s si- o* A,(, o(1) o(2) o(3) o(h4) O(w5) 2/6 2/6 3/6 2 x 3 l6 2x3/6 H(d) t=p(o) I/2xI/6 tl6 5/ 6 2x5/6 A p( o ) 2.333v.u. 1.916 1.916 2,L67 2.083 H(a) 2x4/4 4/4 4/4 2/6 p(o) Si-o(1) si-o(2) si-o(2) si-o(3) Dean si 0.250v.u. -o.t67 -0.L67 0.083 0 d. caac r.6534 r.615 1.615 1 .638 1.630 2 , 3 3 3 v .u . r.916 2.167 1.833 2.000 d. obs 1.6548 1.616 I.616 r.647 1.633 lAdl 0,0014 0.001 0,001 0. 009 0.003 * l{(d) refers to hydrogen bond donors, H(a) to hydrogen bond acceptors. The calculation of bond lengths is = based on d-_.d_--_ + 0.091Ap(O), Baur (1970).catc mean valence units: v.u.; observed si-o distance: dob"i lnAl - d = la . of Lhe l; Ap(o) is the deviarion ' oos cafc' p(O) fron the polyhedron. Ehe Eean p(O) for individual Other shared edges do not occur in this structure unlessone considersO(3) to be coordinatedto the Ca atom. Acknowledgments I thank the Computer Center of the University of Illinois for computer time, Mr. R. Heyman for the m i c r o p r o b ea n a l y s i s ,D r . A . A . K h a n f o r c o l l e c t i n g t h e i n t e n s i t y d a t a , a n d t h e S m i t h s o n i a nI n s t i t u t i o n f o r a s a m p l eo f l a w s o n i t e . References Baur, W H (1965) On hydrogen bonds in crystallinehydrates. A c r a C r y s t a l l o g r, 1 9 , 9 0 9 - 9 1 6 . (1970) Bond length variation and distorted coordination 3t5 polyhedra in inorganic crystals. Trans Am. Crystallogr. Assoc , 6,129-155. (1972) Prediction of hydrogen bonds and hydrogenatom p o s i t i o n si n c r y s t a l l i n es o l i d s .A c t a C r y s t a l l o g r, 8 2 8 , 1 4 5 6 - 1 4 6 5 . (1976) Silicon-oxygenbond length prediction is basedon bond strength variation, other factors contribute very little (absLr.) Am Crystallogr Assoc Program and Abstracts, 2, 60' and A. A. Khan (1970) On the crystal chemistry of salt h y d r a t e s .V I T h e c r y s t a ls t r u c t u r e so f d i s o d i u m h y d r o g e no r t h o arsenate heptahydrate and of disodium hydrogen orthophosphate heptahydrate Acta Crystallogr., 826, 1584-1596. and B. Rama Rao (1968) The crystal structure and the c h e m i c a lc o m p o s i t i o n o f v a u x i t e A m M i n e t a l . , 5 J , 1 0 2 5 - 1 0 2 8 Davis, G A. and A. Pabst (1960) Lawsonite and pumpellyitein glaucophane schists,North Berkeley Hills, California With n o t e s o n t h e X - r a y c r y s t a l l o g r a p h yo f l a w s o n i t e A m . J S c i . ' 258, 689-704. E r n s t , W G . , Y . S e k i , H O n u k i a n d M . C . G i l b e r t ( 1 9 7 0 )C o m parative study of low-grade metamorphism in the California C o a s t R a n g e s a n d t h e o u t e r m e t a m o r p h i c b e l t o f J a p a n .G e o l Soc Am Memoir. 124 G o t t a r d i , G ( 1 9 6 8 ) S t r u c t u r a l f e a t u r e so f s o m e g r o u p - s i l i c a t e s with chains of octahedra. Tschermaks Mineral Petrogr' Mitl , 12,129-139 Haga, N and Y. Takeuchi (1976) Neutron diffraction study of ilvaite Z Kristallogr, 144, 16l-174. Labotka, T C. and G R. Rossman (1974) The infrared pleoc h r o i s m o f l a w s o n i t e :t h e o r i e n t a t i o n o f t h e w a t e r a n d h y d r o x ide groups Am. Mineral , 59, 799-806. P a b s t ,A . ( 1 9 7 7 ) U b e r e i n i g e b e s o n d e r sd i c h t e , w a s s e r h a l t i g eC a l , alic i u m - b z w . B a r i u m - s i l i k a t e a u s d e r F r a n c i s c a n - F o r m a t i o nC fornia (Lawsonit, Vuagnatit, Rosenhahnit, Cymrit). Neles Jahrb Mineral Abh., 129, l-14. R u m a n o v a , I . M a n d T I S k i p e t r o v a( 1 9 5 9 )T h e c r y s t a l s t r u c t u r e of lawsonite. Dokl Akad Nau& SSSR, 124, 324-327 frransl. Sou Phy.s Dokl , 4,20-23 (1959)1. S t r u n z , H ( 1 9 3 7 ) U b e r K r i s t a l l o g r a p h i e u n d c h e m i s c h eZ u s a m m e n s e t z u n gv o n L a w s o n i t u n d L i e v r i t . Z . K r i s t a l l o g r , 9 6 , 5 0 4 506 Wickman, F. E. ( 1947) The crystal structure of lawsonite, CaAl,(Si,O,) (OH), HrO Arkiu Kemi Mineral Geol.,25A,No' ft? Manuscript receiued,July 18, 1977; accepted .for publication, Nouember 25, 1977.
© Copyright 2024 Paperzz