Photochemistry of Smog and Secondary Aerosol formation Junfeng Liu College of Urban and Environmental Sciences, Peking University Sino-France Winter School February 13-16, Beijing, China Outline • • • • Introduction Mechanism of ozone formation Secondary aerosol formation Gas and liquid-phase production of SOA Introduction • Smog is a mixture of Smoke and Fog • Smog type: -London or the Classical Smog -Los Angeles or The Photochemical Smog London Smog • • • Caused by huge amounts of coal burning in December 1952 It is a sulfurous smog, a mixture of fog, soot, SO2, PM, ... 100,000 were ill; 4000 people died prematurely of respiratory problems, followed by additional 8000 deaths Some incidents of deaths associated with London type smog Los Angeles Smog • New kind of smog • First observed in Los Angeles • Primary source Velicle emissions •High ozone level •Low visibility (haze) Los Angeles Ozone concentrations over Los Angeles and Boston Interactions among air pollution emissions, photochemistry, radiation, and climate & health impacts Indirect effect Scattering Lapse rate warm Droplet evaporation cool CCN Climate change Cloud chemistry Absorbing PA O3 SA SO42- Photochemistry Acid Rain SO2 VOC NOx O3. Health effects O3. PM2.5 Mechanism of photochemical smog • Ozone formation • Secondary aerosol formation Null cycle of NOx and O3 hv NO2 O3 + NO Æ NO2 + O2 NO2 + hv Æ NO + O NO O O + O2 + M Æ O3 + M O2 NOx O3 Production of OH radical hv NO2 Dry: O3 + hv Æ O(1D) + O2 NO O O(1D) + M Æ O(3P) + M O(3P) + O2 Æ O3 O2 O2 O3 hv Humid: O(1D) + H2O Æ 2 OH (<320nm) O3P M O1D H2O 2OH Ozone accumulation (Case of CO) hv NO2 O3 NO O NO Prerequisites for high ozone: • NOx: catalysts • Photo: energy • CO: fuel • H2O: OH precursor O2 O2 O3 hv UV H + O2 Æ HO2 CO2 O3P M CO + OH Æ H + CO2 HO2 O1D H 2O OH OH CO NOx, CO, HC Ozone accumulation (Case of CH4) O3 hv NO NO2 NO CH3O2 O O2 O2 O2 O2 O3 hv OH CH3 HCHO H2O O3P M CH3O O1D H 2O OH OH hv CHO HO2 CO CH4 NO NO2 O3 O2 Ozone accumulation (Case of HC) O3 hv NO NO2 NO RO2 O O3 hv R . . O1D H 2O OH OH H O2 ' RC O O2 ' RCHO H 2O O3P M ' RCO O2 O2 O2 . HO2 R-H NO NO2 O3 . Secondary aerosol formation Secondary Aerosol Formation (Nitrate) hv O3 NO2 NO NO O O2 O2 HO2 H 2O 2 O3 hv hv CO2 O3P M low NOx/HC Low NOx O1D H2O CO OH OH no cloud NO2 High NOx NH3 HNO3 Nitrate Secondary Aerosol Formation (sulfate) hv O3 NO2 NO SO2 Low NOx NO O O2 HO2 O3 hv O2 O3P M H2 O2 O2 O1D H2O SO3 O3 H2O H2SO4 gas phase SO2 OH OH SO2 + OH Æ HOSO2 NO2 High NOx cloud H2 SO4 aqueous phase HNO3 NH3 HOSO2 + O2 Æ SO3 + HO2 Nitrate Secondary Aerosol Formation (oxidation of organics) HCHO (formaldhyde) H2C=O + hv Æ HC=O + H H + O2 Æ HO2 HC=O + OH Æ CO + HO2 CH2=CH2 (ethene) CH2=CH2 + OH Æ OHCH2-CH2 OHCH2-CH2 + O2 Æ OHCH2CH2O2 OHCH2CH2O2 + NO Æ NO2 + OHCH2CH2O OHCH2CH2O Æ H2C=O + ·CH2OH O2 + ·CH2OH -> H2C=O + HO2 These reactions produce a host of radicals which “fuel” the smog reaction process Alkene + OH First OH radicals attack the electron rich double bond of an alkene Oxygen then add on the hydroxy radical forming a peroxy-hydroxy radical the peroxy-hydroxy radical radical can oxidize NO to NO2 ,just like HO2 can Further reaction takes place resulting in carbonyls and HO2 which now undergo further reaction; the process then proceeds… Alkene + O3 O=CH Aromatic Reactions CH3 CH3 OH + H2O O + HO2 benzaldehyde o-cresol NO NO2 CH3 +O2 CH2. CH3 OH OH OH * H . toluene CH3 OH .O + O2 CH3 NO2 +O2 H CH3 OH . O H H NO H H O oxygen bridge radical rearrangement OH H O. +O2 H H OH H ? ring cleavage radical O H + HO2 + HO2 O + H butenedial H CH3 methylglyoxal Isoprene oxidation Formation of secondary organic aerosols Motivations (conti…) Jimenez et al. [2009] Science Formation of Sulfate and SOA Atmospheric chemistry O O Cloud Chemistry glyoxal SO2 H2O2 NOx OH SO2 O Evaporation O isoprene Methylglyoxal SO4 SOA O3 Toluene α-pinene m-xylene Nucleation Condensation Sulfuric acid Carboxylic acids Gas-phase production Sulfate production: SO2 + OH + M SO4 + M ΔSOA Y= ΔVOC Y SOA yield is defined as: Two-Product model: ⎛ Kom,1M o ⎞ ⎛ Kom, 2 M o ⎞ ⎜ ⎟ ⎜ ⎟ + α Y = α1 ⎜ 2 ⎟ ⎜ 1+ K M ⎟ om, 2 o ⎠ ⎝ 1 + Kom,1M o ⎠ ⎝ M0 is the concentration of total organic aerosol; α1/2 is mass based stoichiometric coefficients; Kom,1/2 is equilibrium partition coefficients; Odum et al. [1996] M0 (ug/m3) Mechanism of aqueous-phase SOA production toluene isoprene α-pinene + (OH,O3,NO3) O O glyoxal HO Gas to liquid diffusion OH hydroxyacetone Uptake at droplet surface O O O glyoxal O O methylglyoxal OH hydroxyacetone Aqueous phase diffusion O HO O O methylglyoxal glycolaldhyde O HO OH glycolic acid OH O HO O OH glycolic acid O OH glyoxylic acid O O O pyruvic acid O O pyruvic acid O OH acetic acid HO OH oxalic acid O HCOOH formic acid CO2 O CH2(OH)2 formaldehydehydrated O OH glyoxylic acid O OH acetic acid HO OH oxalic acid CO2 HCHO formaldehyde HCOOH formic acid Aqueous phase reactions OH O O gas phase reactions O O glycolaldhyde gas Cloud droplet evaporation Aerosol Aerosol formed through droplet evaporation: a mixture of sulfate, carboxylic acids, and oligomers Coupled gas- and aqueous phase chemistry in GFDL coupled chemistry-climate model AM3 • • • • • • • • • Gas-phase chemistry is being updated from MOZART-2 to MOZART-4 chemistry mechanisms [Horowitz et al. 2003; Emmons et al. 2009] Aqueous chemistry is based on an optimized mechanism for sulfur chemistry, merged with the updated cloud SOA chemistry [Jacob 1986; Pandis and Seinfeld 1989; Ervens et al. 2004,2008; Tan et al. 2009] Coupled mechanism includes: ~100 gas phase species, ~50 aqueous phase species, and totally ~370 reactions Physical and chemical processes include: – Gas-liquid mass transfer – Aqueous-phase ionic equilibrium – Cloud hydrogen ion concentrations (or PH value) prediction: based on electroneutrality equation Cloud droplet size: currently assumed to be10um Cloud droplet lifetime: model time step (30min) or 10min Could fraction: coupled chemistry is solved only for the cloudy area. Cloud entrainment: mixing of outside air into the cloud is neglected. Cloud evaporation: SOA and sulfate are formed when cloud evaporates Global in-cloud production of SO4 and SOA (Tg/yr) SO4 Gas-phase production 22.3 (Tg SO4/yr) Liquid-phase production 92.6 (Tg SO4/yr) SOA Gas-phase production 20 - 30 (Tg/yr) Liquid-phase production 22 - 30 (Tg/yr) Radiative Flux Perturbation due to IC-SOA (watts/m2) (with IC-SOA – without ) RF change (SW+LW) DJF MAM JJA SON Average TOA 0.12 -0.14 -0.22 0.12 -0.03 Surface 0.05 -0.25 -0.18 -0.14 -0.13 Atmos. Abs. 0.07 0.11 -0.04 0.26 0.10 Measurements in Beijing City End END Gas-phase SO4 and SOA production SO4: SO2+OH Æ SO4 22.3 (Tg SO4/yr) SOA: two-product model parameterization 30.3 (Tg/yr) Emissions (Tg/yr) SOA Production (Tg/yr) Average Yield (%) Heald et al. [2008] Henze et al. [2008] Lack et al. [2004] Isoprene 565.6 8.8* 1.6 19.2 14.4 - Terpene 143.7 16.2 11.3 3.7 10.8 22.7 Aromatics 34.3 5.2 15.1 1.4 3.5 - Higher Alkanes 78.9 0.13 0.2 - - - Total 822.5 30.3 24.3 30.3 22.7 Precursors *NOx dependent SOA production from isoprene, based on Carlton et al. [2009] The SOA production is assumed to be approximately 15% of Terpene emissions in the original AM3 configuration with adjustments on temperature [Donner et al., 2011].
© Copyright 2026 Paperzz