Integration Problems Fun Pack ! I. Evaluate the integrals below, clearly noting which integration technique(s) you use in your solution. If the integral is improper, say so, and either give its value or say that the integral is divergent. You may only use the tables on the problems specified. Z 1. Z 100 dx 36 + 25x2 √ 1/2 2 0 Z 0 −1 Z 7. Z √ ln Z π √ 15. 0 √ r3 dr 4 + r2 Z √ 8. 2 θ cos (θ 24. x e dx 1 + e2x dt t + sin t Z Z ∞ √ 1 Z 10. Z √ x10 π/2 ∞ 17. 0 Z π/3 √ 0 27. 1 dx x(1 + x) ln 4 26. w2 3/2 18. x x e sin e dx 19. 28. 4 sec 3x dx dx, table Z sin x dx 1 − cos x 1 20. 0 Z 2 21. 1 Z 1 22. et dt e2t + 9 8 dw √ 4 − w2 0 dx 3 − 2x − x2 π 8 sin4 x dx 0 8 30. y2 4 Z √ dx (x + 1)(x2 + 1) 31. ds √ s s2 − 1 32. x3 dx 2 x + 2x + 1 √ 29. Z Z ) dθ Z cos2 x dx 1 + x2 Z Z 2 √ 11. −2 √ Z arctan(1/x) dx Z x dx 1 + x6 x4 ∞ 25. 0 9. e2x cos 3x dx 1 1 π2 4x2 − x4 dx, table 3 16. cos y dy 2 sin y + sin y − 6 √ 3 3 14. ex dx ex − 1 6. p ln x dx x2 0 2y 2 − 3 dy, table y2 √ 1 3 0 1 5. Z x Z −∞ Z p Z 23. Z 2 13. cos πt dt 4. θ+1 √ dθ θ2 + 2θ 0 Z ∞ 3. 1 12. 2 dx √ 1 + 4x2 2. Z Z Z y dy − 2y − 3 x2 − 9 dx x3 π/3 tan5 x sec4 x dx 0 Z 1 33. p t5 + 2t(5t4 + 2) dt 0 II. Find the value of n required to estimate the value of the following definite integrals using the Trapezoid Rule and Simpson’s Rule within 10−4 . Z 0 2 x −1 1. Z 1 2. −2 Z cos(x + π) dx 3 √ 3. −1 0 1 x+1 III. Estimate the value of the following definite integrals accurate to within 0.1. [Hint: You must use the Error Bound Theorems first in order to guarantee you have found the required n] Z 1. 0 2 p 4 1 + x2 dx Z 2. 4 √ e 0 t Z sin t dt 3. 1 2 ln x dx 1+x Integration Problems Fun Pack Answers Section I 1. trig sub; 10 3 arctan 5x 6 +C √ 2. trig sub; ln( 12. improper, √ 6+ 2 ) 2 6. improper, divergent 7. sub, then partial sin y−2 1 5 ln sin y+3 + C frac, 9. converges, compare w √ 10. table, 51 ln |x5 + x10 − 2| + C q 11. trig, 32 − 32 3. 130, 18 Section III 1. ? 2. ? 3. ? 15. improper, compare to verges 1 √ , t con- 26. sub, √ then trig sub; ln 9−ln(1+ 10) 27. trig sub, 16. parts, ? 17. improper, compare to verges 1 x2 , 18. sub, − cos ex + C tan(3x) 3 e2x 13 (3 sin 3x+2 cos 3x)+ 25. improper x 2, π + tan (3x) 9 +c 21. improper, trig sub, π/3 22. partial frac, 3 ln 2 − 2 23. parts, − x1 ln x − con- √ −2 4−w2 w +C 28. complete square, trig sub, arcsin((x + 1)/2) + C 29. trig; 3π 3 20. partial frac, (π + 2 ln 2)/8 1 x2 2. 82, 8 24. parts, C 14. sub, π/12 19. trig, 8. sub, π/3 1. 116, 2 3 13. table, ? 3. improper, divergent √ 2 2y −3 4. table, − y q √ + 2 ln |y + y 2 − 32 | + C √ √ 5. parts, 8 253 5 − 25 + 23 Section II √ 1 x +C 30. partial frac, (ln 15)/2 1 −1 (x/3) − 31. trig sub, 6 sec √ 2 x2 − 9/(2x ) + C 32. trig, 117/8 √ 33. sub, 2 3
© Copyright 2026 Paperzz