Lesson 4.4 Fractional Exponents and Radicals Exercises (pages 227–228) A 3. The denominator of the exponent is the index of the radical. 1 1 a) 16 2 16 4 b) 36 2 36 6 d) 32 5 5 32 2 f) (1000) 3 3 1000 10 1 1 c) 64 3 3 64 4 e) (27) 3 3 27 3 1 1 4. Write each decimal exponent as a fraction. 1 a) 0.5 b) 2 0.25 1 1 4 1 1000.5 100 2 810.25 814 100 10 So, c) 4 81 0.2 3 So, 1 5 d) 0.2 1 1 5 1 10240.2 1024 5 (32)0.2 (32) 5 5 1024 5 32 4 So, 2 So, 1 5. Use the rule: x n n x 1 3 1 a) 36 3 36 b) 48 2 48 1 c) (30) 5 5 30 1 6. Use the rule: n x xn 1 39 39 2 a) 1 b) 4 1 c) 3 29 29 3 90 90 4 1 d) 5 100 100 5 7. a) Any number raised to the exponent 0 is 1. 80 1 1 b) 8 3 3 8 2 1 c) 8 8 3 2 3 2 8 3 2 22 4 3 d) 8 3 81 8 1 e) 8 8 3 4 3 4 8 3 4 24 16 f) 5 1 83 83 5 8 3 25 32 5 B m a or 4 or 8. Use a n 2 a) 2 3 43 2.3 3 b) 10 5 3 c) m n 2.32 n 3 42 10 5 3 am . 3 or 5 (10)3 or 2.33 9. The formula for the volume, V, of a cube with edge length e units is: V = e3 To determine the value of e, take the cube root of each side. 3 V 3 e3 3 V e Substitute: V = 350 1 e= 3 350 or e = 350 3 1 3 The cube has edge length m a or a . 48 or 48 10. Use a n 2 a) 48 3 m n c) 1.8 3 2.5 m 2 3 5 b) n 3 350 cm or 350 3 cm. 3 1.8 5 2 or 3 (1.8)5 5 2 3 8 2.5 5 3 2 8 5 5 3 3 or 8 8 So, d) 0.75 3 4 3 0.750.75 0.75 4 So, 4 0.75 3 or 4 0.753 2 e) 2 2 5 5 5 5 5 5 or 9 9 9 f) 1.5 = 3 2 1.5 1.25 1.25 So, 3 2 1.25 3 or 1.253 m n 11. Use: am a n 3 a) 3.83 3.8 2 3 Or, since 1.5, 2 b) c) 9 9 4 4 5 5 3 1.5 2 3.83 3.81.5 2 1.5 3 5 5 Or, since 5 5 1.25, 4 4 1.25 9 9 5 5 4 4 3 3 3 d) 3 8 8 3 3 e) 5 5 2 4 4 3 3 Or, since 1.5, 2 f) 5 2.5 3 Or, since 1.5 5 5 4 4 3 2.5 5 3 0.6, 5 5 2.5 3 2.5 0.6 1 12. a) 9 9 2 3 2 3 9 3 33 27 b) 2 1 27 3 27 3 8 8 27 3 8 3 2 9 4 c) 27 2 3 2 2 1 27 3 3 27 3 2 2 2 2 9 3 2 d) The exponent 1.5 = 3 So, 0.361.5 0.36 2 1 0.36 2 0.36 0.63 0.216 2 e) 64 3 1 64 3 3 64 4 16 2 2 2 3 3 f) 3 4 2 25 1 2 4 25 4 25 2 5 8 125 3 3 3 1 is equivalent to taking the square root of the number. 2 1 So, to write an equivalent form of each number using a power with exponent , square the number, 2 then write it as a square root. a) 22 4 13. Raising a number to the exponent 1 So, 2 = 4 2 , or 4 b) 42 16 1 So, 4 = 16 2 , or 16 c) 102 100 1 So, 10 = 100 2 , or 100 d) 32 9 1 So, 3 = 9 2 , or 9 e) 52 25 1 So, 5 = 25 2 , or 25 1 is equivalent to taking the cube root of the number. 3 1 So, to write an equivalent form of each number using a power with exponent , cube the number, 3 then write it as a cube root. 14. Raising a number to the exponent a) 1 3 1 1 So, –1 = 1 3 , or 3 1 b) 23 8 1 So, 2 = 83 , or 3 8 c) 33 27 1 3 So, 3 = 27 , or 3 27 d) 4 3 64 1 So, –4 = 64 3 , or e) 43 64 1 So, 4 = 64 3 , or 3 64 3 64 3 1 2 15. Since 4 is a perfect square, and 4 and involve the square root of 4, I will evaluate these 4 numbers without a calculator. I can evaluate 42 using mental math. Because 4 is not a perfect cube, I will use a calculator to evaluate 3 4 . Use a calculator: 3 4 1.5874... 3 2 1 4 42 3 2 3 4 3 23 8 42 = 16 3 1 2 4 1 2 1 4 1 4 1 2 1 8 3 3 3 3 1 2 So, from least to greatest, the numbers are: , 4 16. a) i) The exponent 1.5 = 3 So, 161.5 16 2 1 16 2 3 16 43 64 3 3 2 3 3 4 , 4 2 , 42 3 4 ii) The exponent 0.75 = 3 So, 810.75 814 1 814 3 81 4 3 33 27 4 5 iii) The exponent 0.8 = So, 32 0.8 4 32 5 1 32 5 5 32 2 4 4 4 16 1 2 iv) The exponent 0.5 = 1 So, 350.5 35 2 35 Since 35 is not a perfect square, use a calculator. 5.9160... 3 2 v) The exponent 1.5 = 3 So, 1.211.5 1.212 1 1.212 1.21 1.13 1.331 3 3 vi) The exponent 0.6 = 3 5 So, 3 4 3 0.6 3 5 4 3 3 5 4 0.8414... Since 3 is not a perfect fifth power, use a calculator. 4 b) I was able to evaluate the powers in parts i, ii, iii, and v without a calculator. I can tell before I evaluate because: in part i, 16 is a perfect square; in part ii, 81 is a perfect fourth power; in part iii, –32 is a perfect fifth power; and in part v, 1.21 is a perfect square. 2 17. Use the formula: h 35d 3 h 35 3.2 35 3 Substitute: d = 3.2 2 3 3.2 2 Since 3.2 is not a perfect cube, use a calculator. 76.0036... A fir tree with base diameter 3.2 m is approximately 76 m tall. 18. The rule for a power with a rational exponent is: m xn x n m 3 In the first line, the student should have written 1.96 2 as 1.96 3 The correct solution is: 3 1.96 2 = 1.96 1.4 3 3 2.744 19. Use the formula: SA 0.096m0.7 Substitute: m = 40 SA 0.096 40 Use a calculator. = 1.2697… The surface area of a child with mass 40 kg is approximately 1.3 m2. 0.7 n 20. a) Use the expression: 100 0.5 5 Substitute: n = 1 2 n 5 100 0.5 100 0.5 1 2 5 1 1 5 100 0.5 2 1 100 0.5 10 Use a calculator. 93.3032... After 1 h, approximately 93% of caffeine remains in your body. 2 1 Use a calculator to evaluate the expression: 100 0.87 2 93.2737... 1 h, approximately 93% of caffeine remains in your body. 2 Both expressions give the same result, to the nearest whole number. After n b) Use the expression: 100 0.5 5 Substitute: n = 1.5 n 1.5 100 0.5 5 100 0.5 5 100 0.5 0.3 Use a calculator. 81.2252... After 1.5 h, approximately 81% of caffeine remains in your body. n c) Use the expression: 100 0.5 5 Equate the expression to 50, the percent of caffeine that remains. n 100 0.5 5 50 n 0.5 5 Solve for n. Divide both sides by 100. 50 100 n 0.5 5 0.5 n 0.5 5 0.51 Equate the exponents. n 1 5 n5 So, after 5 h, 50% of caffeine remains in your body. 3 21. Use the formula: T 0.2 R 2 To calculate the period for Earth, substitute: R = 149 3 T 0.2 149 2 Use a calculator. 363.7553... It takes approximately 363.8 Earth days for Earth to orbit the sun. To calculate the period for Mars, substitute: R = 228 3 T 0.2 228 2 Use a calculator. 688.5449... It takes approximately 688.5 Earth days for Mars to orbit the sun. So, Mars has the longer period. C 22. Karen is correct. You can only multiply a number by itself a whole number of times.
© Copyright 2026 Paperzz