Test 2 Review Solutions Math 1910 1. Differentiate and simplify: a. y = x 4 cos x y ′ = x 4 (− sin x ) + (cos x)(4x 3 ) = x 3 (4 cosx − x sin x ) b. y = € 3x − 4 2x + 1 y= € c. y = sec(5x 2 + 3x + 2) 2 d. y = cot x = (cot x ) 2 (2x + 1)( 3) − (3x − 4)(2) 6x + 3− 6x + 8 11 = = 2 2 2 (2x + 1) (2x + 1) (2x + 1) y ′ = (10x + 3) sec(5x 2 + 3x + 2)tan(5x 2 + 3x + 2) € y ′ = 2(cot x )(− csc2 x ) = −2 cot x csc 2 x € 2 2 e. y = x sin( x + 1) € [ € € ( x 2 + 1)(2x) = 2x x 2 cos( x 2 + 1) + sin( x 2 + 1) y ′ = x 2 cos( x 2 + 1)(2x ) + sin € f. f (x) = x sin x tan x ] f ′(x) = sin x tan x + x cos x tan x + x sin x sec 2 x dy implicitly: dx € 4 6 a. x sin y + y = x x cos yy ′ + sin y + 4y3 y′ = 6x 5 2. Find € € b. y − tan y − sin x = 0 y ′ − sec 2 y y′ − cos x = 0 x cos yy ′ + 4y3 y′ = 6x 5 − sin y ( x cos y + 4y ) y′ = 6x 3 y′ = 3. Find 5 y ′ − sec 2 y y ′ = cos x € − sin y y′(1− sec 2 y ) = cos x 6x 5 − sin y x cos y + 4y3 y′ = cos x cos x =− 2 1 − sec y tan 2 y d 2y 2 2 : x+ y = y dx a. y = sin(2x + 1) y€′ = cos(2x + 1)(2) = 2cos(2x + 1) € y ′′ = −2sin(2x + 1)(2) = −4 sin(2x + 1) € € € € 2 b. x + y = y (Use implicit differentiation.) 1 −1 1 + y′ = 2yy ′ y′ = = (2y − 1) 2y − 1 1 = 2yy ′ − y ′ 1 = y′( 2y − 1) y′ = 1 2y − 1 y ′′ = −1( 2y − 1) −2 (2 y′ ) 2 −2 2 = − = −1( 2y − 1) (2y − 1)3 2y − 1 4. Let P(x) = f (x)g(x), where the functions f and g are graphed in the diagram on the right. y y = f (x) Find P′(1). P′(1) = f ′(1)g(1) + f (1)g ′(1) 1 3 = − (−3) + (−1) = 0 2 2 x y = g(x) 5. Find all values of x for which the functions have horizontal tangents: 7 4x − 3 3 a. f (x) = x (3x − 2) b. g(x) = 2 2x + 1 2 6 7 2x + 1)( 4) − (4x − 3)(4x ) € (3x − 2) (3) + 3x 2 (3x − 2) g ′(x) = ( f ′(x) = x 3 (7) 6 7 ( 2x 2 + 1) 2 = 21x 3 ( 3x − 2) + 3x 2 ( 3x − 2) € 6 −8x 2 + 12x + 4 2 = 3x ( 3x − 2) [ 7x + (3x − 2)] = 2 (2x 2 + 1) 6 2 = 3x ( 3x − 2) (10x − 2) g ′(x) = 0 ⇒ −8x 2 + 12x + 4 = 0 2 1 f ′(x) = 0 ⇒ x = 0, x = ,x = 3 5 € 6. Find all critical numbers: € 3 a. f (x) = x − x + 2 f ′(x) = 3x 2 − 1 € 2 3x − 1 = 0 2 3x = 1 1 x2 = 3 x=± 1 3 1 + 81x = x −1 + 81x x g′ (x) = −1x −2 + 81 b. g(x) = −1x −2 + 81 = 0 1 = 81 x2 1 x2 = 81 1 x=± 9 € −8x 2 + 12x + 4 = 0 −4(2x 2 − 3x − 1) = 0 2x 2 − 3x − 1 = 0 3 ± (−3)2 − 4(2)(−1) x= 2(2) x= 3 ± 17 4 c. y = x + sinx y′ = 1 + cos x 1 + cos x = 0 cos x = −1 x = (2k + 1)π for all integers k 7. Consider the function f (x) = x 3 − 3x + 7 on the interval [0, 4]. a. Find the absolute extrema on the the given interval. f ′(x) = 3x 2 − 3 f (0) = 7 3x 2 − 3 = 0 € x = ±1 f (1) = 5 f (4) = 59 Absolute maximum at (4,49) and absolute minimum at (1,5) b. Find the value of c guaranteed by the Mean Value Theorem. 3c 2 − 3 = 13 f (4) − f (0) 59 − 7 = = 13 16 4 4−0 4 c= = 3 3 8. Does the function f (x) = x 2 − 5x + 3 on the interval [1,3] satisfy the criteria of Rolle's theorem? No: f (1) ≠ f (3). € 9. Use the quotient rule to derive the formula for the derivatives of the functions y = csc x and t = tan x . € y = csc x 1 = sin x (sin x )(0) − (1)(cos x ) y′ = sin 2 x 1 cosx =− sin x sin x = − csc x cot x 10. Find the second derivatives: a. f (x) = sin x + 2x 3 f ′(x) = cos x + 6x 2 f ′′(x) = − sin x + 12x y = tan x sin x = € cos x (cos x )(cosx) − (sin x )( −sin x ) y′ = cos2 x cos 2 x + sin 2 x = cos2 x 1 = = sec 2 x 2 cos x € 1/ 2 b. g(x) = x 2 + 1 = ( x 2 + 1) −1/ 2 −1/ 2 1 g ′(x) = ( x 2 + 1) (2x ) = x ( x 2 + 1) 2 1 −3/ 2 −1 / 2 g ′′(x) = x − ( x 2 + 1) (2x) + (x 2 + 1) 2 g ′′(x) = −x ( x + 1) 2 g ′′(x) = − 2 −3 / 2 x2 (x 2 + 1) 3 /2 + + ( x + 1) 2 x2 + 1 (x 2 + 1) 3 /2 −1/ 2 = =− x2 (x 2 + 1) 1 (x 2 + 1) 3/ 2 3/ 2 + 1 (x 2 + 1) 1/ 2
© Copyright 2026 Paperzz