1 üÿù þü ü-ùùÿ 9.1 (i) y= y 1 , y=x, y=4 x2 4 11 y2 E= ∫ y- 1 dy= -2 y = 1 y 2 1 2 4 4 1 (ii) y 1 1 x3 9 E= ∫ (6-x ) - x +4 dx= 2x- 2 - = -2 x 3 -2 2 y=x 2 +4 ( 1 ) 2 y=6-x -2 1 (iii) E=E1 +E 2 +E3 E1 = ∫ 0 5 (sinx-cosx)dx= -cosx-sinx ] =2 2 2 2 E3 = ∫ (cosx-sinx)dx= sinx+cosx ]5 =1+ 2 5 E2 =∫ 5 4 5 E=4 2 (iv) E= E1 +E 2 y=- 5 x+7 7 E2 E1 y=3-x y=3-x y=x+1 -5 1 2 3 E=14 +9 =24 5 5 5 (cosx-sinx)dx= sinx+cosx ]0 = 2-1 1 x 1 4x E1 = ∫ - +7 - (3-x ) dx= ∫ +4 dx -5 -5 5 5 1 2x 2 2 = +4x =14 5 5 −5 5 x 5 6x E 2 = ∫ - +7 - ( x+1) dx= ∫ - +6 dx 1 1 5 5 5 3x 2 3 =+6x =9 5 5 1 2 9.2 y=x !0 2 k k 2 x3 x3 = ⇔ 3 0 3 k ÿ ∫0 E1 . -b .FRV .VLQG . 2 ∫ ñ!.: E= ⇔ k k 3 8-k 3 = ⇒ k 3 =4 ⇒ k= 3 4 3 3 4b 4b . 2 [ 2 G[ , ∫ 0 . 0 . . +.2 # 1)2 #I$ #0 ⇒ x= x=0 → [ . → 2 E=4∫ . 2 2 2 9.3 )&1#02!." E=4E1 b 2 ∫0 x dx = ∫k x dx 0 b . 2 [ 2 G[ FRV 2G . 2 ∫ 1+cos2 0 4b 4b . 2 I= =.E . . 4 2 2 9.4 (i) y=cosx, x= , x= , y=0 ! V= ∫" FRV[G[ ! ! [VLQ[ ]" ! ( ) ( ) 2 2 2 V= ∫" ( [ ) [ 2 G[ ∫" [ 2 [ 4 G[ (ii) y=x 2 ,y=4x #$ 1 16 = [ 3 [ 5 5 #% 3 y=4x y=x 2 4 2048 15 VLQ G . 2 4 0 2 .2 4 3 9.4 (iii) y=sinx, y=cosx, x=0, x= V= ∫ y=sinx &' 0 4 (FRV [VLQ [ ) G[ ∫ 2 2 &' 0 &' 2 sin2x FRV[G[ 2 0 y=cosx ( ) (iv) y= x , y=x V= ∫ 0 1 y= x ( [) 2 1 1 x 2 x3 [ G[ ∫ [[ 2 G[ 0 2 3 0 ( 2 ) 6 y=x 1 (v) y=x 2 -2x, y=0 ( ) V= ∫ [ [ G[ ∫ 2 0 2 2 2 0 ( 2 x5 4x 3 16 [ [ [ G[ [ 4 3 0 15 5 4 3 2 ) 2 (vi) y= -3x-x 2 , y=0 ( V= ∫ [[ 0 -3 -3 2 ) 2 G[ ∫ 0 -3 ( 0 3 x5 81 [ [ [ G[ [ 3 [ 4 2 5 -3 10 2 3 4 ) 4 9.5 (i) y=2x-x 2 , y=0 V=2 ∫ [I[G[ ∫ 2 2 0 0 2 2 x4 8 [ [[ G[ [ 3 3 4 3 0 ( 2 ) 2 (ii) y=x 2 , x=y 2 V=2 ∫ [ [ [ G[ ∫ 0 0 1 1 1 2 ( 1 2 5 2 x4 3 [ [ G[ [ 4 0 10 5 32 3 ) 1 (iii) y=x 2 +1, y=x+3, x=0 * V=2 ∫+ [ ( \1 \ 2 ) G[ y=x+3 3 1 y=x 2 +1 2 ( ) V=2 ∫ [ ( [) [ G[ ∫ 0 0 2 2 2 ( 2 x 3 2 x 4 16 [ [[ G[ [ 4 0 3 3 2 3 ) (iv) y=x 4 , x=1, y=0 1 x6 V=2 ∫ [\G[ ∫ [ [ G[ 0 0 6 0 1 1 1 ( ) 4 3 5 9.6 -2 2 (i0!12! 3*!&.)2 .2&x : 2 2 2 x5 V= ∫ 2 [ 2 G[ ∫ [ 4 G[ [ -2 -2 5 -2 (ii 0!12! 3*!&.)20#0. y=4 : ( ) 2 ( ) 256 5 2 8 x5 V= ∫ [ − G[ ∫ [ [ G[ [ [ 3 -2 -2 3 5 -2 (iii 0!12! 3*!&.)2 .2&y : 2 V= ∫ 4 0 ( ) 2 2 2 ( \ ) G\ ∫ 2 4 0 ( 2 4 ) 512 15 4 y2 \G[ 2 0 (iv 0!12! 3*!&.)20#0. y= -1: 2 2 2 x 5 2 1088 2 V= ∫ ( ) [ 2 + G[ ∫ [ 4 [ 2 G[ [ [ 3 -2 -2 5 3 -2 15 (v 0!12! 3*!&.)20#0. x=2 ( 2 ( ) ) ( V=2 ∫ [ [ G[ ∫ 2 -2 9.7 y= 2 2 -2 ) 2 2x 3 x 4 128 [ [[ G[ [ [ 2 3 4 -2 3 ( 2 3 ) 1 , x=1, x=0. +*!&.)20#0.[ x3 2 1 -1 2 V=2 ∫ ( [) \G[ ∫ ( [) 2 1 1 1 1 1 G[ ∫ 2 3 G[ 2 3 1 x x x x 2x 1 9.8 V= ∫ (\ ) G[ ∫ ([ 2 2 2 1 1 1 2 0 1 0 1 1 3 ) G[ ∫ 1 0 1 7 4 x4 x7 9 [ [ G[ [ 2 7 0 14 ( 3 6 ) 6 9.9 (i) y= 1 2 x +2 3 3 2 L= ∫ 0 ( ) 32 1+ ( y′ ) dx= ∫ 3 0 ⇒ y′=x x 2 +2 1+x 2 2 2 0 (ii) 9x 2 =4y3 ⇒ 18xx ′=12y 2 ⇒ x ′= 3 0 3 x3 1+x dx= x+ =12 3 0 ( x +2 )dx= ∫ (1+x ) dx= ∫ ( 3 2 2 ) 2y 2 4y 4 4y 4 2 ⇒ ( x ′ ) = 2 = 3 =y 3x 9x 4y 3 14 3 2 2 L= ∫ 1+ydy= (1+y ) = 0 0 3 0 3 3 x 1 1 (iii) y= + ⇒ y′=x 2 - 2 3 4x 4x L= ∫ 3 1+ ( x ′ ) dy= ∫ 3 3 1+ ( y′ ) dx= ∫ 3 1 =∫ 2 2 1 2 3 3 1 1 1 1 1 1+ x 2 - 2 dx= ∫ 1+x 4 - + dx= ∫ x 4 + + dx 4 1 1 2 16x 2 16x 4 4x 3 2 3 2 x 3 1 53 1 2 1 x + dx= x + dx= ∫1 4x 2 3 - 4x = 6 4x 2 1 3 1 (iv) ( y+1) =4x 3 ⇒ 2 ( y+1) y′=12x 2 ⇒ y′= 2 1 ⇒ L= ∫ 1 0 ) 2 (1+9x )3 2 2 10 10 − 1 1+9xdx= = 9 27 3 0 9.10 (i) y= x ⇒ y′= 1 2 x S=2 ∫ \ ( \′ ) G[ ∫ 4 ( 6x 2 36x 4 36x 2 2 ⇒ ( y′ ) = = =9x y+1 ( y+1)2 4x 3 2 1 4 1 [ 4 1 12 G[ ∫ ([ ) G[ 1 4x 4 2 (1+4x )3 2 17 17-5 5 = 4 6 3 1 x3 1 1 (ii) y= + ⇒ y′=x 2 - 2 3 4x 4x 2 x3 1 1 S= ∫ + 1+ x 2 - 2 dx 1 4x 3 4x 3 3 2 x 2 x 1 1 1 4 1 1 4 1 =2 ∫ [ G[ G[ [ ∫ 4 1 1 2 16x 2 16x 4 3 4x 3 4x 2 2 3 3 2 x 2 x 1 1 1 1 =2 ∫ [ 2 2 G[ ∫ [ 2 2 G[ 1 1 4x 4x 3 4x 3 4x 5 2 x 1 1 515 =2 ∫ [ G[ ..= 3 1 64 3 3 16x 7 9.10 (iii) y=x 3 ⇒ y′=3x 2 S=2 ∫ [ 3 [ 4 G[ 1 0 = 1 1 ∫ [ 3 18 0 145 145-10 10 27 ( (iv) y= 2x-x 2 ⇒ y′= S=2 ∫ 12 =2 ∫ [[ 1 12 2 2-2x 2x-x 2 1-x = 2x-x 2 2 1-x 1 1+x 2 -2x G[ ∫ [[ 2 G[ 12 2 2x-x 2 2x-x 2x-x 2 +1+x 2 -2x dx =2 ∫ G[ [[ ]1 2 1 0 1 12 2x-x 2 2 3 S=2 ∫ ([ ) 2 1 ) 1 2 9.11 (i) y= x 3 2 - x1 2 ⇒ y′=x1 2 9 ) 32 2 [[ 1 ( 4 1 2 1+9x 4 [ G[ 18 3 1 4x1 2 2 9 1 1 1 [1 2 1 2 G[ ∫ ([ ) [ G[ 0 2 16x 4x 2 9 9 1 1 1 1 =2 ∫ ([ ) [ G[ ∫ ([ ) [1 2 1 2 G[ ∫ ([ ) [1 2 1 2 G[ 0 0 0 2 16x 4x 4x 9 35 9 738 =2 ∫ [1 2 1 2 [ 3 2 G[ 0 5 4x 4 9 9.12 y 2 =4x ⇒ y=2 x ⇒ y′= 1 x OA = 12 +22 = 5 ( p 1 1+ 1 dx=...= 2+ln 1+ 2 OA= ∫0 x ñ!. "2) #02)!. #: ) ( 5+ 2+ln 1+ 2 ) 9.13 (i) y=cosh2x, y=sinh2x, x=0, x=5 ( ) V= ∫ FRVK 2 [VLQK 2 [ G[ ∫ G[ 5 0 5 0 (ii) y=sechx, y=0, x=0, x=ln2 V= ∫ VHFK 2 [G[ [ WDQK[ ]0 ln2 ln 2 0 (iii) y=e x . y=0, x=0, x=2 2 1 V= ∫ H G[ H 2x 0 2 0 2 2x WDQK (OQ ) 4 H 2 ( ) eln2 -e-ln2 eln2 +e-ln2 3 5 8 1 , y=0, x=1, x=b 1+x 4 b b x -1 2 b V=2 ∫ [\G[ ∫ G[ WDQ [ WDQ -1E 1 1 1+x 4 1 4 2 lim V= lim WDQ -1E − b →∞ b →∞ 4 2 4 4 9.14 y= 9.16 y= 2 2cosec2x = cos2x-sin2x cot2x-1 5, -/. 0 /1 2 3541/2 4cosec 2 2x 2 2 2 2 I[ ] G[ ∫ G[ [ 2 4 6 4 6 (cot2x-1) cot2x-1 46 - 3-1 0-1 V= ∫ 5 2 = - 3-1
© Copyright 2026 Paperzz